Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic moment

Author(s):  
Annemarie Baltay ◽  
German Prieto ◽  
Gregory C. Beroza
1995 ◽  
Vol 100 (B9) ◽  
pp. 18205-18228 ◽  
Author(s):  
George L. Choy ◽  
John L. Boatwright

1987 ◽  
Vol 24 (8) ◽  
pp. 1727-1733 ◽  
Author(s):  
Cecilio J. Rebollar ◽  
Rosa M. Alvarez

Brune's stress drop, apparent stress, and arms stress drop are estimated at a single station for 25 aftershocks of the Ometepec earthquakes (Ms = 6.9 and Ms = 7.0). The arms stress drops and apparent stresses are systematically smaller than Brune's stress drops. Stress drops from the root mean square of acceleration and apparent stress range from 0.01 to 10.2 bars (1 bar = 100 kPa) except for two values (21.4 and 33.0 bars). On the other hand, Brune's stress drops range from 0.6 to 239 bars. Seismic moments ranging from 0.5 × 1019 to 289 × 1019 dyn∙cm (1 dyn∙cm = 10 μN∙cm) were estimated for events with coda magnitudes between 0.6 and 2.2. Values of radiated seismic energy calculated by integration of the displacement spectra range from 2.5 × 1012 to 2.3 × 1016 dyn∙cm. The fmax values lie between 16 and 30 Hz. Seismic coda wave attenuation measured on narrow band-pass-filtered seismograms show a linear dependence of the seismic quality factor of the form [Formula: see text] in the range of frequencies from 3 to 24 Hz.


2019 ◽  
Vol 109 (6) ◽  
pp. 2556-2566 ◽  
Author(s):  
Raymundo Plata‐Martínez ◽  
Xyoli Pérez‐Campos ◽  
Shri Krishna Singh

Abstract General characteristics of seismic energy release of thrust earthquakes in Mexico have been reviewed in the past; however, a detailed analysis can contribute to a better understanding of the mechanisms that control its distribution along the Guerrero, Mexico, subduction zone. To address it, we obtain the source spectra of the 2012 Mw 7.5 Ometepec‐Pinotepa Nacional, the 2014 Mw 7.2 Papanoa, and the 2018 Mw 7.2 Pinotepa Nacional earthquakes, as well as of their M≥4.0 aftershocks to estimate their seismic moment M0 and radiated seismic energy ES. The first and the last sequences occurred at the southern border of the Guerrero seismic gap, a region where no significant earthquake (M>7.0) has occurred at least in the last century; whereas the second sequence was located at the northern edge of the same seismic gap. The mean value of the log of radiated seismic energy scaled with the seismic moment, log(e˜)=log(ES/M0), for this set of earthquakes is −5.05±0.25. We classify the analyzed events into four regions, two in the southern edge of the gap and two in the northern one. At both ends, there is one region that shows regular values of log(e˜) (−4.64±0.25 and −4.62±0.25), whereas the other one shows low values of log(e˜) (−5.40±0.25 and −5.55±0.25) that could be related to a possible slow‐rupture behavior. These last regions are identified near the trench at southern Guerrero coast and immediately outside the northern end of the seismic gap. The distribution of log(e˜) is spatially heterogeneous along the trench, suggesting variations on the shear strength and coupling at the interface.


2020 ◽  
Author(s):  
Kevin Mayeda ◽  
Rengin Gok ◽  
Justin Barno ◽  
William Walter ◽  
Jorge Roman-Nieves

<p>The coda magnitude method of <em>Mayeda and Walter</em> (1996) provides stable source spectra and moment magnitudes (<em>M</em><em><sub>w</sub></em>) for local to regional events from as few as one station that are virtually insensitive to source and path heterogeneity. The method allows for a consistent measure of <em>M</em><em><sub>w</sub></em> over a broad range of event sizes rather than relying on empirical magnitude relationships that attempt to tie various narrowband relative magnitudes (<em>e.g.,</em> <em>M</em><em><sub>L</sub>, M<sub>D</sub>, m<sub>b</sub></em>, etc.) to absolute <em>M</em><em><sub>w </sub></em>derived from long-period waveform modeling. The use of <em>S</em>-coda and <em>P</em>-coda envelopes has been well documented over the past several decades for stable source spectra, apparent stress scaling, and hazard studies. However, up until recently, the method requires extensive calibration effort and routine operational use was limited only to proprietary US NDC software. The Coda Calibration Tool (CCT) stems from a multi-year collaboration between the US NDC and LLNL scientists with the goal of developing a fast and easy Java-based, platform independent coda envelope calibration and processing tool. We present an overview of the tool and advantages of the method along with several calibration examples, all of which are freely available to the public via GitHub (https://github.com/LLNL/coda-calibration-tool). Once a region is calibrated, the tool can then be used in routine processing to obtain stable source spectra and associated source information (<em>e.g.</em>, <em>M</em><em><sub>w</sub></em>, radiated seismic energy, apparent stress, corner frequency, source discrimination on event type and/or depth). As more events are recorded or new stations added, simple updates to the calibration can be performed. All calibration and measurement information (<em>e.g.,</em> site and path correction terms, raw & measured amplitudes, errors, etc.) is stored within an internal database that can be queried for future use. We welcome future collaboration, testing and suggestions by the geophysical community.  </p>


2018 ◽  
Vol 214 (2) ◽  
pp. 990-1003
Author(s):  
Raúl R Castro ◽  
Antonio Mendoza-Camberos ◽  
Arturo Pérez-Vertti

Sign in / Sign up

Export Citation Format

Share Document