scholarly journals Modeling global secondary organic aerosol formation and processing with the volatility basis set: Implications for anthropogenic secondary organic aerosol

Author(s):  
Salvatore C. Farina ◽  
Peter J. Adams ◽  
Spyros N. Pandis
2010 ◽  
Vol 10 (12) ◽  
pp. 30205-30277 ◽  
Author(s):  
M. Shrivastava ◽  
J. Fast ◽  
R. Easter ◽  
W. I. Gustafson ◽  
R. A. Zaveri ◽  
...  

Abstract. The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is modified to include a volatility basis set (VBS) treatment of secondary organic aerosol formation. The VBS approach, coupled with SAPRC-99 gas-phase chemistry mechanism, is used to model gas-particle partitioning and multiple generations of gas-phase oxidation of organic vapors. In addition to the detailed 9-species VBS, a simplified mechanism using 2 volatility species (2-species VBS) is developed and tested for similarity to the 9-species VBS in terms of both mass and oxygen-to-carbon ratios of organic aerosols in the atmosphere. WRF-Chem results are evaluated against field measurements of organic aerosols collected during the MILAGRO 2006 campaign in the vicinity of Mexico City. The simplified 2-species mechanism reduces the computational cost by a factor of 2 as compared to 9-species VBS. Both ground site and aircraft measurements suggest that the 9-species and 2-species VBS predictions of total organic aerosol mass as well as individual organic aerosol components including primary, secondary, and biomass burning are comparable in magnitude. In addition, oxygen-to-carbon ratio predictions from both approaches agree within 25%, providing evidence that the 2-species VBS is well suited to represent the complex evolution of organic aerosols. Model sensitivity to amount of anthropogenic semi-volatile and intermediate volatility (S/IVOC) precursor emissions is also examined by doubling the default emissions. Both the emission cases significantly under-predict primary organic aerosols in the city center and along aircraft flight transects. Secondary organic aerosols are predicted reasonably well along flight tracks surrounding the city, but are consistently over-predicted downwind of the city. Also, oxygen-to-carbon ratio predictions are significantly improved compared to prior studies by adding 15% oxygen mass per generation of oxidation; however, all modeling cases still under-predict these ratios downwind as compared to measurements, suggesting a need to further improve chemistry parameterizations of secondary organic aerosol formation.


2011 ◽  
Vol 11 (13) ◽  
pp. 6639-6662 ◽  
Author(s):  
M. Shrivastava ◽  
J. Fast ◽  
R. Easter ◽  
W. I. Gustafson ◽  
R. A. Zaveri ◽  
...  

Abstract. The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is modified to include a volatility basis set (VBS) treatment of secondary organic aerosol formation. The VBS approach, coupled with SAPRC-99 gas-phase chemistry mechanism, is used to model gas-particle partitioning and multiple generations of gas-phase oxidation of organic vapors. In addition to the detailed 9-species VBS, a simplified mechanism using 2 volatility species (2-species VBS) is developed and tested for similarity to the 9-species VBS in terms of both mass and oxygen-to-carbon ratios of organic aerosols in the atmosphere. WRF-Chem results are evaluated against field measurements of organic aerosols collected during the MILAGRO 2006 campaign in the vicinity of Mexico City. The simplified 2-species mechanism reduces the computational cost by a factor of 2 as compared to 9-species VBS. Both ground site and aircraft measurements suggest that the 9-species and 2-species VBS predictions of total organic aerosol mass as well as individual organic aerosol components including primary, secondary, and biomass burning are comparable in magnitude. In addition, oxygen-to-carbon ratio predictions from both approaches agree within 25 %, providing evidence that the 2-species VBS is well suited to represent the complex evolution of organic aerosols. Model sensitivity to amount of anthropogenic semi-volatile and intermediate volatility (S/IVOC) precursor emissions is also examined by doubling the default emissions. Both the emission cases significantly under-predict primary organic aerosols in the city center and along aircraft flight transects. Secondary organic aerosols are predicted reasonably well along flight tracks surrounding the city, but are consistently over-predicted downwind of the city. Also, oxygen-to-carbon ratio predictions are significantly improved compared to prior studies by adding 15 % oxygen mass per generation of oxidation; however, all modeling cases still under-predict these ratios downwind as compared to measurements, suggesting a need to further improve chemistry parameterizations of secondary organic aerosol formation.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1004
Author(s):  
Hyo-Jung Lee ◽  
Hyun-Young Jo ◽  
Chang-Keun Song ◽  
Yu-Jin Jo ◽  
Shin-Young Park ◽  
...  

A numerical sensitivity study on secondary organic aerosol formation has been carried out by employing the WRF-Chem (Weather Research and Forecasting model coupled with Chemistry). Two secondary organic aerosol formation modules, the Modal Aerosol Dynamics model for Europe/Volatility Basis Set (MADE/VBS) and the Modal Aerosol Dynamics model for Europe/Secondary Organic Aerosol Model (MADE/SORGAM) were employed in the WRF-Chem model, and surface PM2.5 (particulate matter less than 2.5 μm in size) mass concentration and the composition of its relevant chemical sources, i.e., SO42−, NO3−, NH4+, and organic carbon (OC) were simulated during the Korea-United States Air Quality (KORUS-AQ) campaign period (1 May to 12 June 2016). We classified the KORUS-AQ period into two cases, the stagnant period (16–21 May) which was dominated by local emission and the long-range transport period (25–31 May) which was affected by transport from the leeward direction, and focused on the differences in OC secondary aerosol formation between two modules over Northeast Asia. The simulated surface PM2.5 chemical components via the two modules showed the largest systematic biases in surface OC, with a mean bias of 4.5 μg m−3, and the second largest in SO42− abundance of 2.2 μg m−3 over Seoul. Compared with surface observations at two ground sites located near the western coastal Korean Peninsula, MADE/VBS exhibited the overpredictions in OC by 170–180%, whereas MADE/SORGAM showed underpredictions by 49–65%. OC and sulfate via MADE/VBS were simulated to be much higher than that simulated by MADE/SORGAM by a factor of 2.8–3.5 and 1.5–1.9, respectively. Model verification against KORUS-AQ aircraft measurements also showed large discrepancies in simulated non-surface OC between the two modules by a factor of five, with higher OC by MADE/VBS and lower IC by MADE/SORGAM, whereas much closer MADE/VBS simulations to the KORUS-AQ aircraft measurements were found. On the basis of the aircraft measurements, the aggregated bias (sum of four components) for PM2.5 mass concentrations from the MADE/VBS module indicated that the simulation was much closer to the measurements, nevertheless more elaborate analysis on the surface OC simulation performance would be needed to improve the ground results. Our findings show that significant inconsistencies are present in the secondary organic aerosol formation simulations, suggesting that PM2.5 forecasts should be considered with great caution, as well as in the context of policymaking in the Northeast Asia region.


Sign in / Sign up

Export Citation Format

Share Document