scholarly journals Supplementary material to "Secondary organic aerosol formation from smoldering and flaming combustion of biomass: a box model parametrization based on volatility basis set"

Author(s):  
Giulia Stefenelli ◽  
Jianhui Jiang ◽  
Amelie Bertrand ◽  
Emily A. Bruns ◽  
Simone M. Pieber ◽  
...  
2020 ◽  
Vol 20 (10) ◽  
pp. 5995-6014 ◽  
Author(s):  
Camille Mouchel-Vallon ◽  
Julia Lee-Taylor ◽  
Alma Hodzic ◽  
Paulo Artaxo ◽  
Bernard Aumont ◽  
...  

Abstract. The GoAmazon 2014/5 field campaign took place in Manaus, Brazil, and allowed the investigation of the interaction between background-level biogenic air masses and anthropogenic plumes. We present in this work a box model built to simulate the impact of urban chemistry on biogenic secondary organic aerosol (SOA) formation and composition. An organic chemistry mechanism is generated with the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to simulate the explicit oxidation of biogenic and anthropogenic compounds. A parameterization is also included to account for the reactive uptake of isoprene oxidation products on aqueous particles. The biogenic emissions estimated from existing emission inventories had to be reduced to match measurements. The model is able to reproduce ozone and NOx for clean and polluted situations. The explicit model is able to reproduce background case SOA mass concentrations but does not capture the enhancement observed in the urban plume. The oxidation of biogenic compounds is the major contributor to SOA mass. A volatility basis set (VBS) parameterization applied to the same cases obtains better results than GECKO-A for predicting SOA mass in the box model. The explicit mechanism may be missing SOA-formation processes related to the oxidation of monoterpenes that could be implicitly accounted for in the VBS parameterization.


2010 ◽  
Vol 10 (12) ◽  
pp. 30205-30277 ◽  
Author(s):  
M. Shrivastava ◽  
J. Fast ◽  
R. Easter ◽  
W. I. Gustafson ◽  
R. A. Zaveri ◽  
...  

Abstract. The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is modified to include a volatility basis set (VBS) treatment of secondary organic aerosol formation. The VBS approach, coupled with SAPRC-99 gas-phase chemistry mechanism, is used to model gas-particle partitioning and multiple generations of gas-phase oxidation of organic vapors. In addition to the detailed 9-species VBS, a simplified mechanism using 2 volatility species (2-species VBS) is developed and tested for similarity to the 9-species VBS in terms of both mass and oxygen-to-carbon ratios of organic aerosols in the atmosphere. WRF-Chem results are evaluated against field measurements of organic aerosols collected during the MILAGRO 2006 campaign in the vicinity of Mexico City. The simplified 2-species mechanism reduces the computational cost by a factor of 2 as compared to 9-species VBS. Both ground site and aircraft measurements suggest that the 9-species and 2-species VBS predictions of total organic aerosol mass as well as individual organic aerosol components including primary, secondary, and biomass burning are comparable in magnitude. In addition, oxygen-to-carbon ratio predictions from both approaches agree within 25%, providing evidence that the 2-species VBS is well suited to represent the complex evolution of organic aerosols. Model sensitivity to amount of anthropogenic semi-volatile and intermediate volatility (S/IVOC) precursor emissions is also examined by doubling the default emissions. Both the emission cases significantly under-predict primary organic aerosols in the city center and along aircraft flight transects. Secondary organic aerosols are predicted reasonably well along flight tracks surrounding the city, but are consistently over-predicted downwind of the city. Also, oxygen-to-carbon ratio predictions are significantly improved compared to prior studies by adding 15% oxygen mass per generation of oxidation; however, all modeling cases still under-predict these ratios downwind as compared to measurements, suggesting a need to further improve chemistry parameterizations of secondary organic aerosol formation.


2019 ◽  
Author(s):  
Giulia Stefenelli ◽  
Jianhui Jiang ◽  
Amelie Bertrand ◽  
Emily A. Bruns ◽  
Simone M. Pieber ◽  
...  

Abstract. Box model simulations based on the volatility basis set (VBS) approach were used to assess secondary organic aerosol (SOA) precursors and volatility distributions from residential wood combustion. Emissions were sampled from three different residential stoves at different combustion conditions (flaming vs. smoldering-dominated), aging temperatures (−10 °C, 2 °C and 15 °C), and emission loads, then exposed to hydroxyl (OH) radicals in a smog chamber. Primary emissions of SOA precursor compounds, organic aerosol and their evolution during aging in the smog chamber were monitored by a comprehensive suite of gas and particle instrumentation, including a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) and a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). SOA precursors were classified according to their chemical composition and the identification of the nature of the precursors revealed useful to better constrain model parameters, in particular SOA production rates and molecular characteristics of the condensable gases formed. The general aim of the model was the determination of the parameters describing the volatility distributions of the oxidation products from the different chemical classes considered and their temperature dependence. Novel parameterization methods based on a genetic algorithm (GA) approach allowed estimation of precursor class contributions to SOA and evaluation of the effect of emission variability on SOA yield predictions. Significant differences were observed in the gas-phase composition between smoldering and flaming emissions. Smoldering phase emissions were dominated by oxidized VOCs with less than six carbon atoms family (OVOCc 


Sign in / Sign up

Export Citation Format

Share Document