scholarly journals Inference on Water Content in the Mantle Transition Zone Near Subducted Slabs From Anisotropy Tomography

2019 ◽  
Vol 20 (2) ◽  
pp. 1189-1201 ◽  
Author(s):  
Sung‐Joon Chang ◽  
Ana M. G. Ferreira
2020 ◽  
Vol 221 (2) ◽  
pp. 1110-1124 ◽  
Author(s):  
Yanhui Zhang ◽  
Aihua Weng ◽  
Shiwen Li ◽  
Yue Yang ◽  
Yu Tang ◽  
...  

SUMMARY Constraining the distribution of water in different regions of the mantle remains one of the significant challenges to comprehend the global deep water cycle. Geomagnetic depth soundings can provide such constraint through the electrical conductivity structure. Hence, this study aims to propose a regularization technique that can estimate previously unavailable C-response. In the method, the objective function comprised an L1-norm measured data prediction error and a spectral smoothness constraint term. We used the data error of C-response to weight the predicted error. The L-BFGS method was introduced to determine the minimum point of the objective function, and the regularization parameter decreased adaptively during inversion. Thus, the geomagnetic data processed yielded high-quality C-responses in 31 stations in Eastern China. In addition, we obtained 1-D electrical conductivity profiles in the mantle transition zone (MTZ) beneath Eastern China from C-responses using the L-BFGS method. Compared with the global 1-D model, the conductivity–depth profiles revealed that the MTZ beneath Eastern China is more conductive in the east but more resistive in the west. The conversion of these conductivities to water content based on the mineral physics suggested that the MTZ beneath Eastern China is characterized by a high water concentration, approximately 0.2 and 1 wt per cent in the upper and lower MTZ, respectively. Owing to the inclusion of more stations, the water-rich region could be constrained roughly to the east of the North–South Gravity Lineament (NSGL). Further considering seismic images in the same area, this water content distribution pattern suggested that the front of the stagnant Pacific Plate in the lower MTZ might have reached the NSGL. However, the dehydration reactions in the stagnant slab were more active in the eastern part. Perhaps, some of these fluids migrated into the upper MTZ and could be the source of the trapped water found in the xenoliths from the deep upper mantle beneath Eastern China.


2017 ◽  
Vol 462 ◽  
pp. 189-198 ◽  
Author(s):  
Tetsuo Matsuno ◽  
Daisuke Suetsugu ◽  
Kiyoshi Baba ◽  
Noriko Tada ◽  
Hisayoshi Shimizu ◽  
...  

Author(s):  
B. B. Shkursky

Theoretical modeling of regular olivine grains misorientations in mimetic paramorphoses after ringwoodite and wadsleyite, the formation of which during the ascension of matter from the Mantle Transition Zone is expected, has been carried out. The coordinates of the misorientation axes and the misorientation angles, characterizing 10 operations of alignment in the pair intergrowths of olivine grains, eight of which are twins, are calculated. Possible conditions for the formation of mimetic paramorphoses predicted here, and the chances of their persistence are discussed. The calculated orientations are compared with the known twinning laws of olivine.


Nature ◽  
2021 ◽  
Vol 589 (7843) ◽  
pp. 562-566
Author(s):  
Matthew R. Agius ◽  
Catherine A. Rychert ◽  
Nicholas Harmon ◽  
Saikiran Tharimena ◽  
J.-Michael Kendall

Sign in / Sign up

Export Citation Format

Share Document