scholarly journals Hydrothermal Heat Enhances Abyssal Mixing in the Antarctic Circumpolar Current

2019 ◽  
Vol 46 (2) ◽  
pp. 812-821
Author(s):  
Stephanie M. Downes ◽  
Bernadette M. Sloyan ◽  
Stephen R. Rintoul ◽  
John E. Lupton
2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Jifeng Chu ◽  
Kateryna Marynets

AbstractThe aim of this paper is to study one class of nonlinear differential equations, which model the Antarctic circumpolar current. We prove the existence results for such equations related to the geophysical relevant boundary conditions. First, based on the weighted eigenvalues and the theory of topological degree, we study the semilinear case. Secondly, the existence results for the sublinear and superlinear cases are proved by fixed point theorems.


2018 ◽  
Vol 9 ◽  
Author(s):  
Flavia Flaviani ◽  
Declan C. Schroeder ◽  
Karen Lebret ◽  
Cecilia Balestreri ◽  
Andrea C. Highfield ◽  
...  

2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Luisa F. Dueñas ◽  
Dianne M. Tracey ◽  
Andrew J. Crawford ◽  
Thomas Wilke ◽  
Phil Alderslade ◽  
...  

2017 ◽  
Vol 31 (9) ◽  
pp. 1368-1386 ◽  
Author(s):  
Sébastien Moreau ◽  
Alice Della Penna ◽  
Joan Llort ◽  
Ramkrushnbhai Patel ◽  
Clothilde Langlais ◽  
...  

Ocean Science ◽  
2014 ◽  
Vol 10 (2) ◽  
pp. 201-213 ◽  
Author(s):  
G. Sgubin ◽  
S. Pierini ◽  
H. A. Dijkstra

Abstract. In this paper, the variability of the Antarctic Circumpolar Current system produced by purely intrinsic nonlinear oceanic mechanisms is studied through a sigma-coordinate ocean model, implemented in a large portion of the Southern Ocean at an eddy-permitting resolution under steady surface heat and momentum fluxes. The mean transport through the Drake Passage and the structure of the main Antarctic Circumpolar Current fronts are well reproduced by the model. Intrinsic variability is found to be particularly intense in the Subantarctic Front and in the Argentine Basin, on which further analysis is focused. The low-frequency variability at interannual timescales is related to bimodal behavior of the Zapiola Anticyclone, with transitions between a strong and collapsed anticyclonic circulation in substantial agreement with altimeter observations. Variability on smaller timescales shows clear evidence of topographic Rossby-wave propagation along the eastern and southern flanks of the Zapiola Rise and of mesoscale eddies, also in agreement with altimeter observations. The analysis of the relationship between the low- and high-frequency variability suggests possible mechanisms of mutual interaction.


Sign in / Sign up

Export Citation Format

Share Document