energy redistribution
Recently Published Documents


TOTAL DOCUMENTS

458
(FIVE YEARS 56)

H-INDEX

43
(FIVE YEARS 4)

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1563
Author(s):  
Sayahnya Roy ◽  
Alexei Sentchev ◽  
Marc Fourmentin ◽  
Patrick Augustin

Reynolds stress anisotropy is estimated from the stress spheroids, based on 20 Hz ultrasonic anemometer measurements, performed in the coastal area of northern France, over a 1.5-year long period. Size and shape variation (i.e., prolate, oblate, disk, rod, etc.) of stress spheroids are used for the characterization of energy redistribution by turbulent eddies. The sea-breeze (SB) events were identified using a change in wind direction from seaward (SWD) to landward (LWD) during the day time. We found that the LWD wind creates more turbulent anisotropic states than SWD wind. The prolate-shaped stress spheroids correspond to small-scale turbulence observed during LWD wind, while oblate spheroids are found during SWD winds. Moreover, it was found that during LWD winds, large turbulence kinetic energy (TKE) in the flow field produces large stress spheroids. On the contrary, during SWD winds, a smaller level of TKE is responsible for small-size stress spheroid formation. The average volume of the corresponding Reynolds stress spheroids during the LWD is 13% larger than that of during SWD wind.


2021 ◽  
Vol 22 (3) ◽  
Author(s):  
Mateusz Godzik

Evolutionary multi-agent systems (EMAS) are very good at dealing with difficult, multi-dimensional problems. Currently, research is underway to improve this algorithm, giving even more freedom to agents not only in solving the problem but also in making decisions on the behavior of the algorithm. One way is to hybridize this algorithm with other existing algorithms creating Hybrid Evolutionary Multi Agent-System (HEMAS). Unfortunately, such connections generate problems in the form of an unbalanced energy level of agents who have made the decision to use such an improvement. One of the solutions is the mechanism of redistributing the agents' energy in the form of an operator. The article presents several proposals of redistribution operators along with numerous experimental results.


2021 ◽  
Vol 21 (18) ◽  
pp. 13797-13809
Author(s):  
Tao Tang ◽  
Drew Shindell ◽  
Yuqiang Zhang ◽  
Apostolos Voulgarakis ◽  
Jean-Francois Lamarque ◽  
...  

Abstract. For the radiative impact of individual climate forcings, most previous studies focused on the global mean values at the top of the atmosphere (TOA), and less attention has been paid to surface processes, especially for black carbon (BC) aerosols. In this study, the surface radiative responses to five different forcing agents were analyzed by using idealized model simulations. Our analyses reveal that for greenhouse gases, solar irradiance, and scattering aerosols, the surface temperature changes are mainly dictated by the changes of surface radiative heating, but for BC, surface energy redistribution between different components plays a more crucial role. Globally, when a unit BC forcing is imposed at TOA, the net shortwave radiation at the surface decreases by -5.87±0.67 W m−2 (W m−2)−1 (averaged over global land without Antarctica), which is partially offset by increased downward longwave radiation (2.32±0.38 W m−2 (W m−2)−1 from the warmer atmosphere, causing a net decrease in the incoming downward surface radiation of -3.56±0.60 W m−2 (W m−2)−1. Despite a reduction in the downward radiation energy, the surface air temperature still increases by 0.25±0.08 K because of less efficient energy dissipation, manifested by reduced surface sensible (-2.88±0.43 W m−2 (W m−2)−1) and latent heat flux (-1.54±0.27 W m−2 (W m−2)−1), as well as a decrease in Bowen ratio (-0.20±0.07 (W m−2)−1). Such reductions of turbulent fluxes can be largely explained by enhanced air stability (0.07±0.02 K (W m−2)−1), measured as the difference of the potential temperature between 925 hPa and surface, and reduced surface wind speed (-0.05±0.01 m s−1 (W m−2)−1). The enhanced stability is due to the faster atmospheric warming relative to the surface, whereas the reduced wind speed can be partially explained by enhanced stability and reduced Equator-to-pole atmospheric temperature gradient. These rapid adjustments under BC forcing occur in the lower atmosphere and propagate downward to influence the surface energy redistribution and thus surface temperature response, which is not observed under greenhouse gases or scattering aerosols. Our study provides new insights into the impact of absorbing aerosols on surface energy balance and surface temperature response.


2021 ◽  
Vol 926 ◽  
Author(s):  
S. Silvestri ◽  
R. Pecnik

We present direct numerical simulations of developing turbulent channel flows subjected to thermal expansion or contraction downstream of a heated or cooled wall. Using different constitutive relations for viscosity we analyse the response of variable property flows to streamwise acceleration/deceleration by separating the effect of streamwise acceleration/deceleration from the effect of wall-normal property variations. We demonstrate that, beyond a certain streamwise location, the flow can be considered in a state of ‘quasi-equilibrium’ regarding semilocally scaled variables. As such, we claim that the development of turbulent quantities due to streamwise acceleration/deceleration is localized to the region of impulsive heating/cooling, while changes in turbulence occurring farther downstream can be attributed solely to property variations. This finding allows us to study turbulence modulation in accelerating/decelerating flows using the semilocal scaling framework. By investigating the energy redistribution among the turbulent velocity fluctuations, we conclude that a change in bulk streamwise velocity has a non-local effect which originates from the change in mean shear and modifies the energy pathways through velocity-pressure-gradient correlations. On the other hand, the wall-normal property gradients have a local effect and act through the modification of the viscous dissipation. We show that it is possible to superimpose and compare the two different effects when using the semilocal scaling framework.


2021 ◽  
Author(s):  
Sindhana Pannir-Sivajothi ◽  
Jorge Campos-Gonzalez-Angulo ◽  
Luis Martínez-Martínez ◽  
Shubham Sinha ◽  
Joel Yuen-Zhou

Abstract When molecular transitions strongly couple to photon modes, they form hybrid light-matter modes called polaritons. Collective vibrational strong coupling is a promising avenue for control of chemistry, but this can be deterred by the large number of quasi-degenerate dark modes. The macroscopic occupation of a single polariton mode by excitations, as observed in Bose-Einstein condensation, offers promise for overcoming this issue. Here we theoretically investigate the effect of vibrational polariton condensation on the kinetics of electron transfer processes. Compared with excitation with infrared laser sources, the condensate changes the reaction yield significantly due to additional channels with reduced activation barriers resulting from the large accumulation of energy in the lower polariton, and the many modes available for energy redistribution during the reaction. Our results offer tantalizing opportunities to use condensates for driving chemical reactions, kinetically bypassing usual constraints of fast intramolecular vibrational redistribution in condensed phase.


2021 ◽  
Author(s):  
Tao Tang ◽  
Drew Shindell ◽  
Yuqiang Zhang ◽  
Apostolos Voulgarakis ◽  
Jean-Francois Lamarque ◽  
...  

Abstract. For the radiative impact of individual climate forcings, most previous studies focused on the global mean values at the top of the atmosphere (TOA) and less attention has been paid to surface processes, especially for black carbon aerosols. In this study, the surface radiative responses to five different forcing agents were analyzed by using idealized model simulations. Our analyses reveal that for greenhouse gases, solar irradiance and scattering aerosols, the surface temperature changes are mainly dictated by the changes of surface radiative heating, but for BC, surface energy redistribution between different components plays a more crucial role. Globally, when a unit BC forcing was imposed at TOA, the net shortwave radiation at the surface decreased by 5.09 ± 1.80 W m−2 (averaged over global land), which is partially offset by increased downward longwave radiation (1.67 ± 0.24 W m−2) from the warmer atmosphere, causing a net decrease in the incoming downward surface radiation of 3.42 ± 0.51 W m−2. Despite a reduction in the downward radiation energy, the surface air temperature still increased by 0.14 ± 0.05 K because of less efficient energy dissipation, manifested by reduced surface sensible (2.53 ± 0.37 W m−2) and latent heat flux (1.30 ± 0.27 W m−2), as well as a decrease of Bowen ratio (0.18 ± 0.05). Such reductions of turbulent fluxes can be largely explained by enhanced air stability (0.06 ± 0.01 K), measured as the difference of the potential temperature between 925 hPa and surface, and reduced surface wind speed (0.05 ± 0.01 m s−1). The enhanced stability is due to the faster atmospheric warming relative to the surface whereas the reduced wind speed can be partially explained by enhanced stability and reduced equator-to-pole atmospheric temperature gradient. These rapid adjustments under BC forcing exerted a “top-down” impact on the surface energy redistribution and thus, surface temperature response, which is not observed under greenhouse gas or scattering aerosols. Our study provides new insights into the impact of absorbing aerosols on surface energy balance and surface temperature response.


Sign in / Sign up

Export Citation Format

Share Document