Kinematic Subduction Rate Of Labrador Sea Water From an Eddy‐Permitting Numerical Model

2020 ◽  
Vol 125 (7) ◽  
Author(s):  
Peggy Courtois ◽  
Yarisbel Garcia‐Quintana ◽  
Xianmin Hu ◽  
Paul G. Myers
2008 ◽  
pp. 569-612 ◽  
Author(s):  
Igor Yashayaev ◽  
N. Penny Holliday ◽  
Manfred Bersch ◽  
Hendrik M. van Aken

2005 ◽  
Vol 2 (4) ◽  
pp. 417-435 ◽  
Author(s):  
A. Henry-Edwards ◽  
M. Tomczak

Abstract. A new water mass analysis technique is used to analyse the BATS oceanographic data set in the Sargasso Sea of 1988-1998 for changes in Labrador Sea Water (LSW) properties. The technique is based on a sequential quadratic programming method and requires careful definition of constraints to produce reliable results. Variations in LSW temperature and salinity observed in the Labrador Sea are used to define the constraints. It is shown that to minimize the residuals while matching the observed temperature and salinity changes in the source region the nitrate concentration in the Labrador Sea has to be allowed to vary as well. It is concluded that during the period of investigation nitrate underwent significant variations in the Labrador Sea.


2020 ◽  
Vol 125 (8) ◽  
Author(s):  
Afonso Gonçalves Neto ◽  
Jaime B. Palter ◽  
Amy Bower ◽  
Heather Furey ◽  
Xiaobiao Xu

2018 ◽  
Author(s):  
Jürgen Fischer ◽  
Johannes Karstensen ◽  
Marilena Oltmanns ◽  
Sunke Schmidtko

Abstract. A long term mean flow field for the subpolar North Atlantic region with a horizontal resolution of approximately 25 km is created by gridding Argo-derived velocity vectors using two different topography following interpolation schemes. The 10-d float displacements in the typical drift depths of 1000 m to 1500 m represent the flow in the Labrador Sea Water density range. Both mapping algorithms separate the flow field into potential vorticity (PV) conserving, i.e. topography following contribution and a deviating part, which we define as the eddy contribution. To verify the significance of the separation, we compare the mean flow and the eddy kinetic energy (EKE), derived from both mapping algorithms, with those obtained from multiyear mooring observations. The PV-conserving mean flow is characterized by stable boundary currents along all major topographic features including shelf breaks and basin-interior topographic ridges such as the Reykjanes Ridge or the Rockall Plateau. Mid-basin northward advection pathways from the northeastern Labrador Sea into the Irminger Sea and from the Mid Atlantic Ridge region into the Iceland basin are well-resolved. An eastward flow is present across the southern boundary of the subpolar gyre near 52° N, the latitude of the Charlie Gibbs Fracture Zone. The mid-depth EKE field resembles most of the satellite-derived surface EKE field. However, noticeable differences exist along the northward advection pathways in the Irminger Sea and the Iceland basin, where the deep EKE exceeds the surface EKE field. Further, the ratio between mean flow and the square root of the EKE, the Peclet Number, reveals distinct advection-dominated regions as well as basin interior regimes in which mixing is prevailing.


2015 ◽  
Vol 120 (8) ◽  
pp. 5514-5533 ◽  
Author(s):  
Linn Schneider ◽  
Dagmar Kieke ◽  
Kerstin Jochumsen ◽  
Eugene Colbourne ◽  
Igor Yashayaev ◽  
...  

2012 ◽  
Vol 42 (7) ◽  
pp. 1207-1216 ◽  
Author(s):  
Paul G. Myers ◽  
Nilgun Kulan

Abstract Southward transports in the deep western boundary current across 53°N, over 1949–99, are determined from a historical reconstruction. Long-term mean transports, for given water masses, for net southward transport (the southward component of the transport not including recirculation given in parentheses) are 4.7 ± 2.3 Sv (5.1 ± 2.4 Sv) (Sv ≡ 106 m3 s−1) for the Denmark Strait Overflow Water, 6.1 ± 2.7 Sv (6.8 ± 1.7 Sv) for the Iceland–Scotland Overflow Water, 6.5 ± 2.6 Sv (7.1 ± 1.8 Sv) for classical Labrador Sea Water, and 2.3 ± 1.9 Sv (2.7 ± 3.4 Sv) for upper Labrador Sea Water. The estimates take into account seasonal and interannual variability of the isopycnal positions and suggest the importance of including this factor. A strong correlation, 0.91, is found between variability of the total and baroclinic transports (with the barotropic velocity removed) at the annual time scale. This correlation drops to 0.32 if the baroclinic transports are, instead, computed based upon the use of a fixed level of no motion at 1400 m. The Labrador Sea Water layer shows significant variability and enhanced transport during the 1990s but no trend. The deeper layers do show a declining (but nonstatistically significant) trend over the period analyzed, largest in the ISOW layer. The Iceland–Scotland Overflow Water presents a 0.029 Sv yr−1 decline or 1.5 Sv over the 50-yr period, an 18%–22% decrease in its mean transport.


2003 ◽  
Vol 30 (2) ◽  
Author(s):  
C. W. Böning ◽  
M. Rhein ◽  
J. Dengg ◽  
C. Dorow

Sign in / Sign up

Export Citation Format

Share Document