irminger sea
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 34)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Vol 12 (3-2021) ◽  
pp. 68-75
Author(s):  
L.V. Zakharova ◽  
◽  
E.D. Obluchinskaya ◽  

In the coastal waters of the Arctic, the most common species of Fucoids are Fucus vesiculosus, Fucus spiralis, and Ascophyllum nodosum. It was reported that bioactive compounds present in brown algae (such as polyphenols, polysaccharides, proteins, amino acids, etc.) have a variety of biological properties: antioxidant, antiviral, antibacterial, anticoagulant, etc. Extraction of biologically active substances from macroalgae in order to obtain products with the necessary properties is based on several factors: the chemical composition of the raw material, which depends on the conditions of the collection sites, as well as the nature of the solvent, the extraction method, etc. This paper presents the results of a comparative study of extracts from three Fucaceae family species collected on the coast of the Barents Sea and the Irminger Sea (West Iceland) for polyphenol content. The antioxidant activity of the extracts was also determined by reaction with 2,2-diphenyl-1-picrylhydrazyl (DPPH). It was shown that the content of polyphenols in extracts depends on the places of collection of algae, and their antioxidant activity does not differ significantly, which suggests the presence of other antioxidants in the extracts.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fiz F. Pérez ◽  
Jon Olafsson ◽  
Solveig R. Ólafsdóttir ◽  
Marcos Fontela ◽  
Taro Takahashi

AbstractThe processes of warming, anthropogenic CO2 (Canth) accumulation, decreasing pHT (increasing [H+]T; concentration in total scale) and calcium carbonate saturation in the subarctic zone of the North Atlantic are unequivocal in the time-series measurements of the Iceland (IS-TS, 1985–2003) and Irminger Sea (IRM-TS, 1983–2013) stations. Both stations show high rates of Canth accumulation with different rates of warming, salinification and stratification linked to regional circulation and dynamics. At the IS-TS, advected and stratified waters of Arctic origin drive a strong increase in [H+]T, in the surface layer, which is nearly halved in the deep layer (44.7 ± 3.6 and 25.5 ± 1.0 pmol kg−1 yr−1, respectively). In contrast, the weak stratification at the IRM-TS allows warming, salinification and Canth uptake to reach the deep layer. The acidification trends are even stronger in the deep layer than in the surface layer (44.2 ± 1.0 pmol kg−1 yr−1 and 32.6 ± 3.4 pmol kg−1 yr−1 of [H+]T, respectively). The driver analysis detects that warming contributes up to 50% to the increase in [H+]T at the IRM-TS but has a small positive effect on calcium carbonate saturation. The Canth increase is the main driver of the observed acidification, but it is partially dampened by the northward advection of water with a relatively low natural CO2 content.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 704
Author(s):  
Viktor P. Voronin ◽  
Nina N. Nemova ◽  
Tatjana R. Ruokolainen ◽  
Dmitrii V. Artemenkov ◽  
Aleksei Y. Rolskii ◽  
...  

New data on lipid and fatty acid profiles are presented, and the dynamics of the studied components in muscles in the males and females of the beaked redfish, Sebastes mentella, in the depth gradient of the Irminger Sea (North Atlantic) is discussed. The contents of the total lipids (TLs), total phospholipids (PLs), monoacylglycerols (MAGs), diacylglycerols (DAGs), triacylglycerols (TAGs), cholesterol (Chol), Chol esters, non-esterified fatty acids (NEFAs), and wax esters were determined by HPTLC; the phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylcholine (PC), and lysophosphatidylcholine (LPC) were determined by HPLC; and fatty acids of total lipids were determined using GC. The Chol esters prevailed in muscles over the storage TAGs, and the wax ester content was high, which is a characteristic trait of vertically migrating species. Specific dynamics in certain PL in redfish were found to be depended on depth, suggesting that PLs are involved in the re-arrangement of the membrane physicochemical state and the maintenance of motor activity under high hydrostatic pressure. The high contents of DHA and EPA were observed in beaked redfish muscles is the species’ characteristic trait. The MUFAs in muscles include dietary markers of zooplankton (copepods)—20:1(n-9) and 22:1(n-11), whose content was found to be lower in fish sampled from greater depths.


Author(s):  
Astrid Pacini ◽  
Robert S. Pickart ◽  
Isabela A. Le Bras ◽  
Fiammetta Straneo ◽  
N.P. Holliday ◽  
...  

AbstractThe boundary current system in the Labrador Sea plays an integral role in modulating convection in the interior basin. Four years of mooring data from the eastern Labrador Sea reveal persistent mesoscale variability in the West Greenland boundary current. Between 2014 and 2018, 197 mid-depth intensified cyclones were identified that passed the array near the 2000 m isobath. In this study, we quantify these features and show that they are the downstream manifestation of Denmark Strait Overflow Water (DSOW) cyclones. A composite cyclone is constructed revealing an average radius of 9 km, maximum azimuthal speed of 24 cm/s, and a core propagation velocity of 27 cm/s. The core propagation velocity is significantly smaller than upstream near Denmark Strait, allowing them to trap more water. The cyclones transport a 200-m thick lens of dense water at the bottom of the water column, and increase the transport of DSOW in the West Greenland boundary current by 17% relative to the background flow. Only a portion of the features generated at Denmark Strait make it to the Labrador Sea, implying that the remainder are shed into the interior Irminger Sea, are retroflected at Cape Farewell, or dissipate. A synoptic shipboard survey east of Cape Farewell, conducted in summer 2020, captured two of these features which shed further light on their structure and timing. This is the first time DSOW cyclones have been observed in the Labrador Sea—a discovery that could have important implications for interior stratification.


2021 ◽  
Author(s):  
Siren Rühs ◽  
Eric Oliver ◽  
Arne Biastoch ◽  
Claus W. Böning ◽  
Michael Dowd ◽  
...  

<p>Deep convection and associated deep water formation are key processes for climate variability, since they impact the oceanic uptake of heat and trace gases and alter the structure and strength of the global overturning circulation. For long, deep convection in the subpolar North Atlantic was thought to be confined to the central Labrador Sea in the western subpolar gyre (SPG). However, there is increasing evidence that deep convection also occurs in the eastern SPG south of Cape Farewell and in the Irminger Sea. In particular, observations indicate gyre-scale intensified convection in 2015-2018. Here we assess this recent event in the context of the temporal evolution of the spatial deep convection pattern in the SPG since the mid-twentieth century, using realistic eddy-rich ocean model simulations. These reveal large interannual variability, including several periods with intensified deep convection in the eastern SPG. Notably, this happened in 2015-2018, but to a lesser degree in the late 1980s to early 1990s, the period with highest deep convection intensity in the Labrador Sea related to a persistent positive phase of the North Atlantic Oscillation. Our analyses further suggest that deep convection in 2015-2018 occurred with an unprecedented high (low) relative contribution of the eastern (western) SPG to the total deep convection volume. This is partly linked to a considerable smaller north-westward extent of deep convection in the Labrador Sea compared to previous periods of intensified deep convection, and may be a first fingerprint of strong near-surface freshening in the Labrador Sea associated with Greenland melting.</p>


2021 ◽  
Author(s):  
Sijia Zou ◽  
Amy Bower ◽  
Heather Furey ◽  
Robert Pickart ◽  
Loïc Houpert ◽  
...  

<div> <p>Abundant cyclonic eddies are observed to travel along the Deep Western Boundary Current around Greenland by Lagrangian floats, hydrographic stations and moorings. Most of the cyclones have intensified rotations below the surface (700-1000 dbar), with maximum azimuthal velocities of ~30 cm/s at radii of ~10 km. The swift rotation and small radius lead to a relatively large Rossby number (~0.4), suggesting important contributions from the ageostrophic terms. The subsurface rotational core is also characterized with a local (both vertically and horizontally) potential vorticity (PV) maximum, which is associated with the pinching of isopycnals towards the mid-depths (i.e. high stratification). The PV structure suggests the origin of the cyclone as the Denmark Strait Overflow Cyclone. The latter is known to be formed by vortex stretching southwest of the Denmark Strait, where outflow waters with high PV from the sill descends the continental slope into the low PV Irminger Sea. Finally, we show that these cyclones can influence the boundary currents around Greenland by introducing property anomalies that originate from the Denmark Strait.</p> </div>


2021 ◽  
Author(s):  
Elodie Duyck ◽  
Femke De Jong

<p>Greenland Ice Sheet melt and freshening of the Arctic Ocean lead to increased discharge of freshwater into the East Greenland Current. If this additional freshwater reaches the convective regions of the Subpolar North Atlantic it could weaken deep mixing and affect the strength of the Atlantic Meridional Overturning Circulation. In particular, freshwater exported away from the South-East Greenland shelf could affect deep convection in the Irminger Sea, which has recently been shown to have a key role in the Atlantic overturning circulation. Though export of fresh shelf surface water is well observed west of Greenland, there is still little insight into surface water export from the East Greenland shelf to the Irminger Sea.</p><p>The East Greenland Current Drifter Investigation of Freshwater Transport drifter deployment conducted in August 2019 at 65°N on the eastern side of Greenland, resulted in five out of 30 drifters being exported away from the east Greenland shelf, four of which were exported at Cape Farewell. The specific wind regime at Cape Farewell is a potential driving factor for enhanced freshwater export in the area. While persistent south-eastward barrier winds push surface waters to the coast over most of the eastern shelf, Cape Farewell experiences strong eastward wind events such as tip-jets that could cause off-shelf export. Using wind data from the ERA-5 atmospheric reanalysis, we compute Ekman transport along the east Greenland shelf. We find greater probability for off-shelf Ekman transport at Cape Farewell than along the rest of the shelf, confirming that the area is the most likely to contribute to wind-driven freshwater export to the Irminger Sea. Wind and surface velocity data from a high-resolution model (2 km) are used to further investigate and quantify freshwater export at Cape Farewell and how it relates to local wind events.</p>


2021 ◽  
Author(s):  
Oliver Gutjahr ◽  
Johann H. Jungclaus ◽  
Nils Brüggemann ◽  
Helmuth Haak ◽  
Jochem Marotzke

<p>Recent observations suggest that deep convection and water mass transformation in the Irminger Sea southeast of Greenland, together with overflows from the Nordic Seas, may be more important for the variability of the Atlantic meridional overturning circulation (AMOC) than the Labrador Sea. The preconditioning for and triggering of deep convection in the Irminger Sea is strongly associated with topography-induced mesoscale wind phenomena, such as Greenland tip jets, katabatic winds and marine cold air outbreaks. However, the resolution of current coupled climate models is too coarse to capture all the properties of these wind systems or to capture them at all. Here we explore the air-ice-ocean interactions induced by mesoscale wind phenomena in the Irminger Sea in a 1-year global coupled 5km simulation with ICON-ESM. The model is able to capture the complex interactions of the wind field and the ocean. We find that strong downward katabatic winds cause substantial heat loss from the Irminger Sea in addition to Greenland tip jets. The outflowing katabatic winds form narrow streaks of cold air that extend across the entire Irminger basin from southeast Greenland to Iceland. In addition, cold air outbreaks from the sea ice lead to the genesis of mesoscale cyclones, which in turn can cause Greenland tip jets before moving off to the east. All these wind phenomena cause substantial heat loss that preconditions the ocean for deep convection. If these wind systems are not resolved, the water mass transformation in the Irminger Sea could be too weak, contributing to why the Labrador Sea dominates AMOC variability in models. We conclude that resolving these mesoscale wind systems in an Earth system model could have significant implications for deep convection and water mass transformation in the Irminger Sea, and thus for AMOC variability.</p>


2021 ◽  
Author(s):  
Eva Prieto ◽  
Damien Desbruyères ◽  
Virginie Thierry

<p><strong>Temperature and salinity seasonal to interannual variability of Iceland Scotland Overflow Water (ISOW) and Denmark Strait Overflow Water (DSOW) is investigated by combining two in-situ datasets in the Irminger Sea for the period 1997-2020: 12-yr of repeated hydrography (1997-2018) provided by the FOUREX, OVIDE and RREX sections and 4-yr of data (2016-2020) from 8 Deep Argo floats deployed in the region between 2016 and 2018. </strong></p><p><strong>In order to enable a consistent analysis of ocean temperature and salinity variability from unevenly distributed vertical profiles (both in space and time), it is necessary to estimate the appropriate regional climatology to be removed from every observation. Two independent procedures are followed to compute anomalies and quantify uncertainties related to the choice of climatology: First, the global 1°-resolution World Ocean Atlas 2018 (2005-2017 averages) climatology is retrieved from every observed profile (Deep Argo, hydrography). Second, </strong><span><strong>the well-known and sampled OVIDE transect (2002-2018 average) is used to build a reference section of geographical anomalies that are subsequently propagated along potential vorticity contours </strong></span><span><strong>in the Irminger Sea.</strong></span><strong> Neutral density surfaces 28.02 kgm</strong><sup><strong>-3 </strong></sup><strong>and 28.12 kgm</strong><sup><strong>-3</strong></sup><strong> are then chosen from mean OVIDE 2002-2018 gridded fields as representative of ISOW and DSOW levels, respectively. Significant decadal trends in water mass properties are revealed by repeated hydrography, whereas some striking boundary-interior spatial patterns are captured by Deep Argo floats. Property changes of ISOW and DSOW are discussed in terms of changes of source waters in the Nordic Seas, entrainment of Atlantic waters into the overflow waters and cascading events from the Greenland slope.</strong></p><p> </p>


2021 ◽  
Author(s):  
Nora Fried ◽  
M. Femke de Jong

<p>As an extension of the North Atlantic Current, the Irminger Current is an important component of the overturning in the subpolar North Atlantic. It contains warm, saline Subpolar Mode Water and cold, dense North East Atlantic Deep Water flowing northward along the western flank of the Reykjanes Ridge. As part of OSNAP (Overturning in the Subpolar North Atlantic Project) the Irminger Current has been monitored since 2014 with a mooring array consisting of five moorings, all equipped with current meters, ADCPs and CTDs.</p><p>Preliminary results from the recent 6-year mooring time series until summer 2020 give new insights into the interannual transport variability of the Irminger Current. The mean volume transport is 11.3 ± 8.8 Sv with a clear maximum of the yearly mean transport in 2019 (15.7 Sv). The Irminger Current experienced a decrease in salt transport by 50% from 2016 – 2018 compared to 2014 – 2016. This signal originates from a freshwater anomaly in the eastern subpolar North Atlantic.</p><p>For an investigation of the longer-term variability we used monthly mean reanalysis data (CMEMS) from 1993 - summer 2019 and the analysis and forecast up to summer 2020 along the Irminger Current mooring array across the Irminger Sea. The reanalysis data compares well with the mooring results both in mean transport and structural representation of the Irminger Current. Volume transport in the eastern Irminger Sea and sea surface height gradient are significantly correlated by r = 0.82 on interannual time scales. The 28-year time series shows a significant negative trend in volume transport over the eastern Irminger Sea, concomitant with a significant negative trend in the sea surface height and density gradient. Hydrographic changes over the top of the Mid Atlantic Ridge are dominating the trend in density gradient as changes in the central Irminger Sea are smaller and mostly density compensating.</p>


Sign in / Sign up

Export Citation Format

Share Document