scholarly journals Evaluation of an Online Grid‐Coarsening Algorithm in a Global Eddy‐Admitting Ocean Biogeochemical Model

2019 ◽  
Vol 11 (6) ◽  
pp. 1759-1783 ◽  
Author(s):  
Sarah Berthet ◽  
Roland Séférian ◽  
Clément Bricaud ◽  
Matthieu Chevallier ◽  
Aurore Voldoire ◽  
...  
2020 ◽  
Author(s):  
Samantha Carter ◽  
◽  
Elizabeth M. Griffith ◽  
Arne Winguth ◽  
Teresa Beaty

2014 ◽  
Vol 11 (21) ◽  
pp. 6107-6117 ◽  
Author(s):  
N. C. Swart ◽  
J. C. Fyfe ◽  
O. A. Saenko ◽  
M. Eby

Abstract. We estimate changes in the historical ocean carbon sink and their uncertainty using an ocean biogeochemical model driven with wind forcing from six different reanalyses and using two different eddy parameterization schemes. First, we quantify wind-induced changes over the extended period from 1871 to 2010 using the 20th Century Reanalysis winds. Consistent with previous shorter-term studies, we find that the wind changes act to reduce the ocean carbon sink, but the wind-induced trends are subject to large uncertainties. One major source of uncertainty is the parameterization of mesoscale eddies in our coarse resolution simulations. Trends in the Southern Ocean residual meridional overturning circulation and the globally integrated surface carbon flux over 1950 to 2010 are about 2.5 times smaller when using a variable eddy transfer coefficient than when using a constant coefficient in this parameterization. A second major source of uncertainty arises from disagreement on historical wind trends. By comparing six reanalyses over 1980 to 2010, we show that there are statistically significant differences in estimated historical wind trends, which vary in both sign and magnitude amongst the products. Through simulations forced with these reanalysis winds, we show that the influence of historical wind changes on ocean carbon uptake is highly uncertain, and the resulting trends depend on the choice of surface wind product.


2019 ◽  
Vol 124 (9) ◽  
pp. 2728-2750 ◽  
Author(s):  
L. Castro de la Guardia ◽  
Y. Garcia‐Quintana ◽  
M. Claret ◽  
X. Hu ◽  
E. D. Galbraith ◽  
...  

2015 ◽  
Vol 8 (2) ◽  
pp. 1375-1509 ◽  
Author(s):  
O. Aumont ◽  
C. Ethé ◽  
A. Tagliabue ◽  
L. Bopp ◽  
M. Gehlen

Abstract. PISCES-v2 is a biogeochemical model which simulates the lower trophic levels of marine ecosystem (phytoplankton, microzooplankton and mesozooplankton) and the biogeochemical cycles of carbon and of the main nutrients (P, N, Fe, and Si). The model is intended to be used for both regional and global configurations at high or low spatial resolutions as well as for short-term (seasonal, interannual) and long-term (climate change, paleoceanography) analyses. There are twenty-four prognostic variables (tracers) including two phytoplankton compartments (diatoms and nanophytoplankton), two zooplankton size-classes (microzooplankton and mesozooplankton) and a description of the carbonate chemistry. Formulations in PISCES-v2 are based on a mixed Monod–Quota formalism: on one hand, stoichiometry of C/N/P is fixed and growth rate of phytoplankton is limited by the external availability in N, P and Si. On the other hand, the iron and silicium quotas are variable and growth rate of phytoplankton is limited by the internal availability in Fe. Various parameterizations can be activated in PISCES-v2, setting for instance the complexity of iron chemistry or the description of particulate organic materials. So far, PISCES-v2 has been coupled to the NEMO and ROMS systems. A full description of PISCES-v2 and of its optional functionalities is provided here. The results of a quasi-steady state simulation are presented and evaluated against diverse observational and satellite-derived data. Finally, some of the new functionalities of PISCES-v2 are tested in a series of sensitivity experiments.


2003 ◽  
Vol 50 (22-26) ◽  
pp. 3143-3169 ◽  
Author(s):  
Watson W. Gregg ◽  
Paul Ginoux ◽  
Paul S. Schopf ◽  
Nancy W. Casey

2016 ◽  
Author(s):  
Olivier Aumont ◽  
Marco van Hulten ◽  
Matthieu Roy-Barman ◽  
Jean-Claude Dutay ◽  
Christian Ethé ◽  
...  

Abstract. The marine biological carbon pump is dominated by the vertical transfer of Particulate Organic Carbon (POC) from the surface ocean to its interior. The efficiency of this transfer plays an important role in controlling the amount of atmospheric carbon that is sequestered in the ocean. Furthermore, the abundance and composition of POC is critical for the removal of numerous trace elements by scavenging, a number of which such as iron are essential for the growth of marine organisms, including phytoplankton. Observations and laboratory experiments have shown that POC is composed of numerous organic compounds that can have very different reactivities. Yet, this variable reactivity of POC has never been extensively considered, especially in modeling studies. Here, we introduced in the global ocean biogeochemical model NEMO-PISCES a description of the variable composition of POC based on the theoretical Reactivity Continuum Model proposed by (Boudreau and Ruddick, 1991). Our model experiments show that accounting for a variable lability of POC increases POC concentrations in the ocean’s interior by one to two orders of magnitude. This increase is mainly the consequence of a better preservation of small particles that sink slowly from the surface. Comparison with observations is significantly improved both in abundance and in size distribution. Furthermore, the amount of carbon that reaches the sediments is increased by more than a factor of two, which is in better agreement with global estimates of the sediment oxygen demand. The impact on the major macro-nutrients (nitrate and phosphate) remains modest. However, iron (Fe) distribution is strongly altered, especially in the upper mesopelagic zone as a result of more intense scavenging: Vertical gradients in Fe are milder in the upper ocean which appears to be closer to observations. Thus, our study shows that the variable lability of POC can play a critical role in the marine biogeochemical cycles which advocates for more dedicated in situ and laboratory experiments.


2021 ◽  
Vol 18 (4) ◽  
pp. 1291-1320
Author(s):  
Rebecca M. Wright ◽  
Corinne Le Quéré ◽  
Erik Buitenhuis ◽  
Sophie Pitois ◽  
Mark J. Gibbons

Abstract. Jellyfish are increasingly recognised as important components of the marine ecosystem, yet their specific role is poorly defined compared to that of other zooplankton groups. This paper presents the first global ocean biogeochemical model that includes an explicit representation of jellyfish and uses the model to gain insight into the influence of jellyfish on the plankton community. The Plankton Type Ocean Model (PlankTOM11) model groups organisms into plankton functional types (PFTs). The jellyfish PFT is parameterised here based on our synthesis of observations on jellyfish growth, grazing, respiration and mortality rates as functions of temperature and jellyfish biomass. The distribution of jellyfish is unique compared to that of other PFTs in the model. The jellyfish global biomass of 0.13 PgC is within the observational range and comparable to the biomass of other zooplankton and phytoplankton PFTs. The introduction of jellyfish in the model has a large direct influence on the crustacean macrozooplankton PFT and influences indirectly the rest of the plankton ecosystem through trophic cascades. The zooplankton community in PlankTOM11 is highly sensitive to the jellyfish mortality rate, with jellyfish increasingly dominating the zooplankton community as its mortality diminishes. Overall, the results suggest that jellyfish play an important role in regulating global marine plankton ecosystems across plankton community structure, spatio-temporal dynamics and biomass, which is a role that has been generally neglected so far.


Sign in / Sign up

Export Citation Format

Share Document