Out of the Ice Age: Megatides of the Arctic Ocean and the Bølling‐Ållerød, Younger Dryas Transition

2020 ◽  
Vol 47 (23) ◽  
Author(s):  
Jesse Velay‐Vitow ◽  
W. Richard Peltier
Nature ◽  
2010 ◽  
Vol 464 (7289) ◽  
pp. 740-743 ◽  
Author(s):  
Julian B. Murton ◽  
Mark D. Bateman ◽  
Scott R. Dallimore ◽  
James T. Teller ◽  
Zhirong Yang

2008 ◽  
Vol 70 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Raymond S. Bradley ◽  
John H. England

AbstractWe propose that prior to the Younger Dryas period, the Arctic Ocean supported extremely thick multi-year fast ice overlain by superimposed ice and firn. We re-introduce the historical term paleocrystic ice to describe this. The ice was independent of continental (glacier) ice and formed a massive floating body trapped within the almost closed Arctic Basin, when sea-level was lower during the last glacial maximum. As sea-level rose and the Barents Sea Shelf became deglaciated, the volume of warm Atlantic water entering the Arctic Ocean increased, as did the corresponding egress, driving the paleocrystic ice towards Fram Strait. New evidence shows that Bering Strait was resubmerged around the same time, providing further dynamical forcing of the ice as the Transpolar Drift became established. Additional freshwater entered the Arctic Basin from Siberia and North America, from proglacial lakes and meltwater derived from the Laurentide Ice Sheet. Collectively, these forces drove large volumes of thick paleocrystic ice and relatively fresh water from the Arctic Ocean into the Greenland Sea, shutting down deepwater formation and creating conditions conducive for extensive sea-ice to form and persist as far south as 60°N. We propose that the forcing responsible for the Younger Dryas cold episode was thus the result of extremely thick sea-ice being driven from the Arctic Ocean, dampening or shutting off the thermohaline circulation, as sea-level rose and Atlantic and Pacific waters entered the Arctic Basin. This hypothesis focuses attention on the potential role of Arctic sea-ice in causing the Younger Dryas episode, but does not preclude other factors that may also have played a role.


Data Series ◽  
10.3133/ds862 ◽  
2014 ◽  
Author(s):  
Lisa L. Robbins ◽  
Jonathan Wynn ◽  
Paul O. Knorr ◽  
Bogdan Onac ◽  
John T. Lisle ◽  
...  

2020 ◽  
Vol 29 (1) ◽  
pp. 138-154
Author(s):  
R.V. Smirnov ◽  
O.V. Zaitseva ◽  
A.A. Vedenin

A new species of Pogonophora obtained from one station at a depth of 25 m from near the Dikson Island in the Kara Sea is described. Galathealinum karaense sp. nov. is one of the largest pogonophorans, the first known representative of the rare genus Galathealinum Kirkegaard, 1956 in the Eurasian part of the Arctic Ocean and a highly unusual finding for the desalted shallow of the Yenisey Gulf. Several characters occurring in the new species are rare or unique among the congeners: under-developed, hardly discernible frills on the tube segments, extremely thin felted fibres in the external layer of the tube, and very faintly separated papillae in the anterior part of the trunk. Morphological characters useful in distinguishing species within the genus Galathealinum are defined and summarised in a table. Diagnosis of the genus Galathealinum is emended and supplemented by new characters. Additionally, three taxonomic keys are provided to the species of Galathealinum and to the known species of the Arctic pogonophorans using either animals or their empty tubes only, with the brief zoogeographical information on each Arctic species.


Sign in / Sign up

Export Citation Format

Share Document