Roles of Magnetospheric Convection on Nonlinear Drift Resonance Between Electrons and ULF Waves

Author(s):  
Li Li ◽  
Yoshiharu Omura ◽  
Xu‐Zhi Zhou ◽  
Qiu‐Gang Zong ◽  
Sui‐Yan Fu ◽  
...  
2020 ◽  
Author(s):  
Xuzhi Zhou ◽  
Li Li ◽  
Yoshiharu Omura ◽  
Qiugang Zong ◽  
Suiyan Fu ◽  
...  

<p>In the Earth's inner magnetosphere, charged particles can be accelerated and transported by ultralow frequency (ULF) waves via drift resonance. We investigate the effects of magnetospheric convection on the nonlinear drift resonance process, which provides an inhomogeneity factor S to externally drive the pendulum equation that describes the particle motion in the ULF wave  field. The S factor, defined as the ratio of the driving amplitude to the square of the pendulum trapping frequency, is found to vary with magnetic local time and as a consequence, oscillates quasi-periodically at the particle drift frequency. To better understand the particle behavior governed by the driven pendulum equation, we carry out simulations to obtain the evolution of electron distribution functions in energy and L-shell phase space. We find that resonant electrons can remain trapped by the low-m ULF waves under strong convection electric  field, whereas for high-m ULF waves, the electrons trajectories can be significantly modified. More interestingly, the electron drift frequency is close to the nonlinear trapping frequency for intermediate-m ULF waves, which corresponds to chaotic motion of resonant electrons. These  findings shed new light on the nature of particle coherent and diffusive transport in the inner magnetosphere.</p>


2018 ◽  
Vol 123 (10) ◽  
pp. 8422-8438 ◽  
Author(s):  
X. Shi ◽  
J. B. H. Baker ◽  
J. M. Ruohoniemi ◽  
M. D. Hartinger ◽  
K. R. Murphy ◽  
...  
Keyword(s):  

2004 ◽  
Vol 22 (1) ◽  
pp. 169-182 ◽  
Author(s):  
D. M. Wright ◽  
T. K. Yeoman ◽  
L. J. Baddeley ◽  
J. A. Davies ◽  
R. S. Dhillon ◽  
...  

Abstract. The EISCAT high power heating facility at Tromsø, northern Norway, has been utilised to generate artificial radar backscatter in the fields of view of the CUTLASS HF radars. It has been demonstrated that this technique offers a means of making very accurate and high resolution observations of naturally occurring ULF waves. During such experiments, the usually narrow radar spectral widths associated with artificial irregularities increase at times when small scale-sized (high m-number) ULF waves are observed. Possible mechanisms by which these particle-driven high-m waves may modify the observed spectral widths have been investigated. The results are found to be consistent with Pc1 (ion-cyclotron) wave activity, causing aliasing of the radar spectra, in agreement with previous modelling work. The observations also support recent suggestions that Pc1 waves may be modulated by the action of longer period ULF standing waves, which are simultaneously detected on the magnetospheric field lines. Drifting ring current protons with energies of ∼ 10keV are indicated as a common plasma source population for both wave types. Key words. Magnetospheric physics (MHD waves and instabilities) – Space plasma physics (wave-particle interactions) – Ionosphere (active experiments)


1988 ◽  
Vol 8 (9-10) ◽  
pp. 427-436 ◽  
Author(s):  
Kazue Takahashi
Keyword(s):  

2020 ◽  
Author(s):  
Xueling Shi ◽  
Michael D. Hartinger ◽  
J. B. H. Baker ◽  
John Michael Ruohoniemi ◽  
Dong Lin ◽  
...  

2016 ◽  
Vol 43 (18) ◽  
pp. 9444-9452 ◽  
Author(s):  
Zhiyang Xia ◽  
Lunjin Chen ◽  
Lei Dai ◽  
Seth G. Claudepierre ◽  
Anthony A. Chan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document