spectral width
Recently Published Documents


TOTAL DOCUMENTS

578
(FIVE YEARS 128)

H-INDEX

33
(FIVE YEARS 5)

2022 ◽  
Vol 14 (1) ◽  
pp. 33-55
Author(s):  
Claudia Acquistapace ◽  
Richard Coulter ◽  
Susanne Crewell ◽  
Albert Garcia-Benadi ◽  
Rosa Gierens ◽  
...  

Abstract. As part of the EUREC4A field campaign, the research vessel Maria S. Merian probed an oceanic region between 6 to 13.8∘ N and 51 to 60∘ W for approximately 32 d. Trade wind cumulus clouds were sampled in the trade wind alley region east of Barbados as well as in the transition region between the trades and the intertropical convergence zone, where the ship crossed some mesoscale oceanic eddies. We collected continuous observations of cloud and precipitation profiles at unprecedented vertical resolution (7–10 m in the first 3000 m) and high temporal resolution (1–3 s) using a W-band radar and micro rain radar (MRR), installed on an active stabilization platform to reduce the impact of ship motions on the observations. The paper describes the ship motion correction algorithm applied to the Doppler observations to extract corrected hydrometeor vertical velocities and the algorithm created to filter interference patterns in the MRR observations. Radar reflectivity, mean Doppler velocity, spectral width and skewness for W-band and reflectivity, mean Doppler velocity, and rain rate for MRR are shown for a case study to demonstrate the potential of the high resolution adopted. As non-standard analysis, we also retrieved and provided liquid water path (LWP) from the 89 GHz passive channel available on the W-band radar system. All datasets and hourly and daily quicklooks are publically available, and DOIs can be found in the data availability section of this publication. Data can be accessed and basic variables can be plotted online via the intake catalog of the online book “How to EUREC4A”.


2022 ◽  
Author(s):  
Ze Chen ◽  
Yufang Tian ◽  
Yinan Wang ◽  
Yongheng Bi ◽  
Xue Wu ◽  
...  

Abstract. Based on the quality-controlled observational spectral width data of the Beijing Mesosphere–Stratosphere–Troposphere (MST) radar in the altitudinal range of 3–19.8 km from 2012 to 2014, this paper analyzes the relationship between the proportion of negative turbulent kinetic energy (N-TKE) and the horizontal wind speed/horizontal wind vertical shear domain, and gives the distributional characteristics of atmospheric turbulence parameters obtained by using different calculation models. Three calculation models of the spectral width method were used in this study—namely, the H model (Hocking, 1985), N-2D model (Nastrom, 1997) and D-H model (Dehghan and Hocking, 2011). The results showed that the proportion of N-TKE in the H model increases with the horizontal wind speed and/or the vertical shear of horizontal wind speed, up to 80 %. When the horizontal wind speed is greater than 40 m·s−1, the proportion of N-TKE in the H model is greater than 60 %, and thus the H model is not applicable. When the horizontal wind speed is greater than 20 m s−1, the proportion of N-TKE in the N-2D model and D-H model increases with the horizontal wind speed, independent of the vertical shear of the horizontal wind speed, and the maximum values are 2 % and 4 %, respectively. However, it is still necessary to consider the applicability of the N-2D model and D-H model in some weather processes with strong winds. The distributional characteristics with height of the turbulent kinetic energy dissipation rate 𝜀 and the vertical eddy diffusion coefficient Kz derived by the three models are consistent with previous studies. Still, there are differences in the values of turbulence parameters. Also, the range resolution of the radar has little effect on the differences in the range of turbulence parameters' values. The median values of 𝜀 in the H model, N-2D model and D-H model are 10−3.2–10−2.8 m2 s−3, 10−2.8–10−2.4 m2 s−3 and 10−3.0–10−2.5 m2 s−3, respectively. The median values of Kz in these three models are 100.18–100.67 m2 s−1, 100.57–100.90 m2 s−1 and 100.44–100.74 m2 s−1.


2022 ◽  
pp. 127893
Author(s):  
Yang Xu ◽  
Quan Sheng ◽  
Peng Wang ◽  
Xuelong Cui ◽  
Yizhu Zhao ◽  
...  

Author(s):  
С.Н. Николаев ◽  
В.С. Багаев ◽  
М.А. Чернопицский ◽  
И.И. Усманов ◽  
Е.Е. Онищенко ◽  
...  

We studied the optical properties of an atomically thin WSe$_2$ film obtained by gold-assisted mechanical exfoliation. Raman scattering spectra, low-temperature photoluminescence, and micro-reflection from large-scale monolayer are investigated. At room temperature, the optical properties of such a film reproduce the properties of WSe$_2$ monolayers obtained by regular mechanical exfoliation. It is shown that at low temperatures, the radiation spectra of the resulting film are determined by standard mechanisms of radiative recombination involving free excitons, bound excitons, and trions. However, in contrast to room temperatures, there is a significant difference in the spectral width and intensity of the lines compared to monolayers WSe$_2$, obtained regular way from the same source material. The differences found, demonstrating a significant increase in background doping and structural disorder when using gold-assisted exfoliation, may be meaningful for a number of optoelectronic applications of atomically thin WSe$_2$ films.


Abstract This paper examines the impact of cloud-base turbulence on activation of cloud condensation nuclei (CCN). Following our previous studies, we contrast activation within a non-turbulent adiabatic parcel and an adiabatic parcel filled with turbulence. The latter is simulated by applying a forced implicit large eddy simulation within a triply periodic computational domain of 643 m3. We consider two monodisperse CCN. Small CCN have a dry radius of 0.01 micron and a corresponding activation (critical) radius and critical supersaturation of 0.6 micron and 1.3%, respectively. Large CCN have a dry radius of 0.2 micron and feature activation radius of 5.4 micron and critical supersaturation 0.15 %. CCN are assumed in 200 cm−3 concentration in all cases. Mean cloud base updraft velocities of 0.33, 1, and 3 m s−1 are considered. In the non-turbulent parcel, all CCN are activated and lead to a monodisperse droplet size distribution above the cloud base, with practically the same droplet size in all simulations. In contrast, turbulence can lead to activation of only a fraction of all CCN with a non-zero spectral width above the cloud base, of the order of 1 micron, especially in the case of small CCN and weak mean cloud base ascent. We compare our results to studies of the turbulent single-size CCN activation in the Pi chamber. Sensitivity simulations that apply a smaller turbulence intensity, smaller computational domain, and modified initial conditions document the impact of specific modeling assumptions. The simulations call for a more realistic high-resolution modeling of turbulent cloud base activation.


2021 ◽  
Vol 88 (6) ◽  
pp. 829-835
Author(s):  
A. Sargsyan ◽  
А. Sarkisyan ◽  
A. Tonoyan ◽  
D. Sarkisyan

Using the spectrum of selective reflection (SR) of laser radiation from the boundary of the surface of the dielectric window of the spectroscopic nanocells – pairs of rubidium atoms, the value of the magnetic field applied to the nanocell is measured. A method is proposed for calculating the magnetic induction B in the range of 0.1–6.0 kG based on the ratio of the frequency intervals between atomic transitions, which greatly simplifies the determination of B, particularly, there is no need for a reference spectrum at B = 0. To implement the SR process a 300-nm column of vapors of Rb atoms is used, and atomic transitions with a sub- Doppler spectral width of 80–90 MHz are formed. This leads to frequency separation of transitions in SR spectrum that is important for the proposed method. SR spectrum can be analyzed using a specially designed computer program that accelerates the data processing. The small thickness of the vapor column allows high spatial resolution, which is important in the case of inhomogeneous magnetic fields.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 523
Author(s):  
Maksim M. Khudyakov ◽  
Andrei E. Levchenko ◽  
Vladimir V. Velmiskin ◽  
Konstantin K. Bobkov ◽  
Svetlana S. Aleshkina ◽  
...  

A tapered Er-doped fiber amplifier for high peak power pulses amplification has been developed and tested. The core diameter changed from 15.8 µm (mode field diameter (MFD) 14.5 µm) to 93 µm (MFD 40 µm) along 3.7 m maintaining single-mode performance at 1555 nm (according to the S2-method, the part of the power of high-order modes does not exceed 1.5%). The amplification of 0.9 ns pulses with spectral width below 0.04 nm up to a peak power above 200 kW (limited by self-phase modulation) with a slope pump-to-signal conversion efficiency of 15.6% was demonstrated.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1534
Author(s):  
Jinhu Wang ◽  
Binze Xie ◽  
Jiahan Cai ◽  
Yuhao Wang ◽  
Jiang Chen

As a major threat to aviation flight safety, it is particularly important to make accurate judgments and forecasts of the ice accumulation environment. Radar is widely used in civil aviation and meteorology, and has the advantages of high timeliness and resolution. In this paper, a variety of machine learning methods are used to establish the relationship between radar data and icing index (Ic) to determine the ice accumulation environment. The research shows the following. (1) A linear model was established, based on the scattering rate factor (Zh), radial velocity (v), spectral width (w), velocity standard deviation (σ) detected by 94 GHz millimeter wave radar, and backward attenuation coefficient (β) detected by 905 nm lidar, so linear regression was carried out. After principal component analysis (PCA), the correction determination coefficient of the linear equation was increased from 0.7127 to 0.7240. (2) Ice accumulation was unlikely for samples that were significantly off-center. By clustering the data into three or four categories, the proportion of icing lattice points could be increased from 18.81% to 33.03%. If the clustering number was further increased, the ice accumulation ratio will not be further increased, and the increased classification is reflected in the classification of pairs of noises and the possibility of omission is also increased. (3) Considering the classification and nonlinear factors of ice accumulation risk, the neural network method was used to judge the ice accumulation environment. Two kinds of neural network structures were established for quantitative calculation: Structure 1 first distinguished whether there was ice accumulation, and further calculated the icing index for the points where there was ice accumulation; Structure 2 directly calculated the temperature and relative humidity, and calculated the icing index according to definition. The accuracy of the above two structures could reach nearly 60%, but the quantitative judgment of the ice accumulation index was not ideal. The reasons for this dissatisfaction may be the small number of variables and samples, the interval between time and space, the difference in instrument detection principle, and the representativeness of the ice accumulation index. Further research can be improved from the above four points. This study can provide a theoretical basis for the diagnosis and analysis of the aircraft ice accumulation environment.


JETP Letters ◽  
2021 ◽  
Vol 114 (9) ◽  
pp. 524-527
Author(s):  
A. A. Bobrov ◽  
S. A. Saakyan ◽  
V. A. Sautenkov ◽  
B. B. Zelener

The dipole–dipole broadening of the spectrum of the selective reflection of intense resonance light from the interface between a transparent dielectric and a gas of the natural mixture of Rb isotopes has been studied experimentally. The case of a high gas density where the Doppler broadening can be neglected has been investigated. It has been shown that dipole–dipole broadening is reduced with increasing the number density of excited atoms. When the laser beam intensity is much higher than the saturation intensity of a resonance transition, a significant broadening due to the very high laser beam intensity has not been observed in the reflection spectrum from the transparent dielectric/gas interface. The observed intensity dependence of the spectral width has been explained by the quenching collisions of the excited atoms with the interface.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012071
Author(s):  
S. V. Koromyslov ◽  
E.I. Ageev ◽  
E. Yu. Ponkratova ◽  
D. A. Zuev

Abstract Today the world demand for the creation of highly efficient nanoscale white light sources is growing. It happens because energy-efficient information and communication systems are being developed, in which optical signals are replacing electrical signals. For the fabrication of such devices, creating efficient nanoscale white light sources with high efficiency is very acute. Such structures obtained by current methods have a common disadvantages: a small spectral width and low efficiency. Here we demonstrate the development of metal-dielectric structures exploiting the single-step and lithography-free laser-induced dewetting of bi-layer gold silicon films and study their broadband photoluminescence.


Sign in / Sign up

Export Citation Format

Share Document