scholarly journals Logjams and channel morphology influence sediment storage, transformation of organic matter, and carbon storage within mountain stream corridors

Author(s):  
Nicholas A. Sutfin ◽  
Ellen Wohl ◽  
Timothy Fegel ◽  
Natalie Day ◽  
Laurel Lynch
Author(s):  
Trina Stephens

Land‐use change can have a major impact on soil properties, leading to long‐term changes in soilnutrient cycling rates and carbon storage. While a substantial amount of research has been conducted onland‐use change in tropical regions, empirical evidence of long‐term conversion of forested land toagricultural land in North America is lacking. Pervasive deforestation for the sake of agriculturethroughout much of North America is likely to have modified soil properties, with implications for theglobal climate. Here, we examined the response of physical, chemical and biological soil properties toconversion of forest to agricultural land (100 years ago) on Roebuck Farm near Perth, Ontario, Canada.Soil samples were collected at three sites from under forest and agricultural vegetative cover on bothhigh‐ and low‐lying topographic positions (12 locations in total; soil profile sampled to a depth of 40cm).Our results revealed that bulk density, pH, and nitrate concentrations were all higher in soils collectedfrom cultivate sites. In contrast, samples from forested sites exhibited greater water‐holding capacity,porosity, organic matter content, ammonia concentrations and cation exchange capacity. Many of these characteristics are linked to greater organic matter abundance and diversity in soils under forestvegetation as compared with agricultural soils. Microbial activity and Q10 values were also higher in theforest soils. While soil properties in the forest were fairly similar across topographic gradients, low‐lyingpositions under agricultural regions had higher bulk density and organic matter content than upslopepositions, suggesting significant movement of material along topographic gradients. Differences in soilproperties are attributed largely to increased compaction and loss of organic matter inputs in theagricultural system. Our results suggest that the conversion of forested land cover to agriculture landcover reduces soil quality and carbon storage, alters long‐term site productivity, and contributes toincreased atmospheric carbon dioxide concentrations.


BIOSCIENTIAE ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 104
Author(s):  
Siam Melina ◽  
Krisdianto Krisdianto

South Kalimantan is one of carbon contributor with an area of swamp with ± 1,140,207 ha area of swamp land. The potential area for changed to be an agricultural land is ± 763,207 ha, and the remain used for pool when the rainy season is come. The highest C reserve is in biomass (mass of living-plant part) and necromass (mass of dead-plant part) at the top soil, microbe, and soil-organic matter. Based on description above, the problem is how much stored-carbon in necromass of plant at martapura lowland swamp, because the largest carbon storage found in necromass of plant. The purpose of this study was to estimate the stored carbon contained in necromass of vegetation in lowland swamp. This research has been done in Martapura from April to July 2009. Sampling is done at 4 location include Tungkaran village, Keramat Baru village, Sungai Rangas village and Sungai Tabuk village. Each sampling location divided into 2 stations in one sampling. Analysis of stored-carbon in necromass of plant is using Walkey and Black Method. The result showed that average ranges of carbon stored in plant necromass are 490,95 – 1744,66 gm-2.  


Sign in / Sign up

Export Citation Format

Share Document