marine invertebrates
Recently Published Documents


TOTAL DOCUMENTS

2051
(FIVE YEARS 428)

H-INDEX

90
(FIVE YEARS 10)

2022 ◽  
pp. 1-21
Author(s):  
Jean-David Moreau ◽  
Romain Vullo ◽  
Sylvain Charbonnier ◽  
Romain Jattiot ◽  
Vincent Trincal ◽  
...  

Abstract Since the 1980s, the Upper Jurassic lithographic limestone of the Causse Méjean (southern France) has been known by local naturalists to yield fossils. However, until the beginning of the 21st century, this plattenkalk remained largely undersampled and scientifically underestimated. Here, we present the results of two decades of prospection and sampling in the Drigas and the Nivoliers quarries. We provide the first palaeontological inventory of the fossil flora, the fauna and the ichnofauna for these localities. The fossil assemblages show the co-occurrence of marine and terrestrial organisms. Marine organisms include algae, bivalves, brachiopods, cephalopods (ammonites, belemnites and coleoids such as Trachyteuthis), echinoderms, decapod crustaceans (ghost shrimps, penaeoid shrimps and glypheoid lobsters) and fishes (including several actinopterygians and a coelacanth). Terrestrial organisms consist of plant remains (conifers, bennettitaleans, pteridosperms) and a single rhynchocephalian (Kallimodon cerinensis). Ichnofossils comprise traces of marine invertebrates (e.g. limulid trackways, ammonite touch mark) as well as coprolites and regurgitalites. Given the exquisite preservation of these fossils, the two quarries can be considered as Konservat-Lagerstätten. Both lithological features and fossil content suggest a calm, protected and shallow-marine environment such as a lagoon partially or occasionally open to the sea. Most fossils are allochthonous to parautochthonous and document diverse ecological habitats. Similarly to other famous Upper Jurassic plattenkalks of western Europe such as Solnhofen, Cerin or Canjuers, the Causse Méjean is a key landmark for our understanding of coastal/lagoonal palaeoecosystems during the Kimmeridgian–Tithonian interval.


2022 ◽  
Vol 10 (1) ◽  
pp. 81
Author(s):  
Kaoru Uesugi ◽  
Kazuaki Nagayama ◽  
Euichi Hirose

While nanoscale nipple arrays are expected to reduce light reflection and/or dust contamination in some insects, similar structures have been reported in various marine invertebrates. To evaluate the anti-contamination property of the structure in aquatic regimes, we measured the adsorption and adhesion forces on the flat surface and MOSMITE™ (Mitsubishi Chemical Corporation, Tokyo, Japan), a synthetic material mimicking the nipple array, under water. A small force toward the surface occurred when the probe approached the substrate surface. This adsorption force was significantly smaller on MOSMITE™ than on the flat surface. The adhesion force toward the surface occurred when the probe was detached from the surface, and it was also significantly smaller on MOSMITE™ than on the flat surface. The adhesion force in the air was much greater than the force under water, and the force was also significantly smaller on MOSMITE™ than on the flat surface. In the aquatic regime, the nipple array provides less adsorption/adhesion properties for the surface and thus, the organisms would have less contamination of microparticles on their body surface. As the adsorption and adhesion forces are also involved in the attachment of cells, tissue, and larvae, less adhesive body surfaces should be beneficial for survival in aquatic environments, as well as land environments.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Natalia V. Zhukova ◽  
Marina G. Eliseikina ◽  
Evgeniy S. Balakirev ◽  
Francisco J. Ayala

AbstractThe discovery of symbiotic associations extends our understanding of the biological diversity in the aquatic environment and their impact on the host’s ecology. Of particular interest are nudibranchs that unprotected by a shell and feed mainly on sponges. The symbiotic association of the nudibranch Rostanga alisae with bacteria was supported by ample evidence, including an analysis of cloned bacterial 16S rRNA genes and a fluorescent in situ hybridization analysis, and microscopic observations. A total of 74 clones belonging to the phyla α-, β-, γ-Proteobacteria, Actinobacteria, and Cyanobacteria were identified. FISH confirmed that bacteriocytes were packed with Bradyrhizobium, Maritalea, Labrenzia, Bulkholderia, Achromobacter, and Stenotrophomonas mainly in the foot and notum epidermis, and also an abundance of Synechococcus cyanobacteria in the intestinal epithelium. An ultrastructural analysis showed several bacterial morphotypes of bacteria in epidermal cells, intestine epithelium, and in mucus layer covering the mollusk body. The high proportion of typical bacterial fatty acids in R. alisae indicated that symbiotic bacteria make a substantial contribution to its nutrition. Thus, the nudibranch harbors a high diversity of specific endo- and extracellular bacteria, which previously unknown as symbionts of marine invertebrates that provide the mollusk with essential nutrients. They can provide chemical defense against predators.


2021 ◽  
Author(s):  
Justin Tweet ◽  
Holley Flora ◽  
Summer Weeks ◽  
Eathan McIntyre ◽  
Vincent Santucci

Grand Canyon-Parashant National Monument (PARA) in northwestern Arizona has significant paleontological resources, which are recognized in the establishing presidential proclamation. Because of the challenges of working in this remote area, there has been little documentation of these resources over the years. PARA also has an unusual management situation which complicates resource management. The majority of PARA is administered by the Bureau of Land Management (BLM; this land is described here as PARA-BLM), while about 20% of the monument is administered by the National Park Service (NPS; this land is described here as PARA-NPS) in conjunction with Lake Mead National Recreation Area (LAKE). Parcels of state and private land are scattered throughout the monument. Reports of fossils within what is now PARA go back to at least 1914. Geologic and paleontologic reports have been sporadic over the past century. Much of what was known of the paleontology before the 2020 field inventory was documented by geologists focused on nearby Grand Canyon National Park (GRCA) and LAKE, or by students working on graduate projects; in either case, paleontology was a secondary topic of interest. The historical record of fossil discoveries in PARA is dominated by Edwin McKee, who reported fossils from localities in PARA-NPS and PARA-BLM as part of larger regional projects published from the 1930s to the 1980s. The U.S. Geological Survey (USGS) has mapped the geology of PARA in a series of publications since the early 1980s. Unpublished reports by researchers from regional institutions have documented paleontological resources in Quaternary caves and rock shelters. From September to December 2020, a field inventory was conducted to better understand the scope and distribution of paleontological resources at PARA. Thirty-eight localities distributed across the monument and throughout its numerous geologic units were documented extensively, including more than 420 GPS points and 1,300 photos, and a small number of fossil specimens were collected and catalogued under 38 numbers. In addition, interviews were conducted with staff to document the status of paleontology at PARA, and potential directions for future management, research, protection, and interpretation. In geologic terms, PARA is located on the boundary of the Colorado Plateau and the Basin and Range provinces. Before the uplift of the Colorado Plateau near the end of the Cretaceous 66 million years ago, this area was much lower in elevation and subject to flooding by shallow continental seas. This led to prolonged episodes of marine deposition as well as complex stratigraphic intervals of alternating terrestrial and marine strata. Most of the rock formations that are exposed in the monument belong to the Paleozoic part of the Grand Canyon section, deposited between approximately 510 and 270 million years ago in mostly shallow marine settings. These rocks have abundant fossils of marine invertebrates such as sponges, corals, bryozoans, brachiopods, bivalves, gastropods, crinoids, and echinoids. The Cambrian–Devonian portion of the Grand Canyon Paleozoic section is represented in only a few areas of PARA. The bulk of the Paleozoic rocks at PARA are Mississippian to Permian in age, approximately 360 to 270 million years old, and belong to the Redwall Limestone through the Kaibab Formation. While the Grand Canyon section has only small remnants of younger Mesozoic rocks, several Mesozoic formations are exposed within PARA, mostly ranging in age from the Early Triassic to the Early Jurassic (approximately 252 to 175 million years ago), as well as some middle Cretaceous rocks deposited approximately 100 million years ago. Mesozoic fossils in PARA include marine fossils in the Moenkopi Formation and petrified wood and invertebrate trace fossils in the Chinle Formation and undivided Moenave and Kayenta Formations.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 93
Author(s):  
Laura Drago ◽  
Diana Ferro ◽  
Rigers Bakiu ◽  
Loriano Ballarin ◽  
Gianfranco Santovito

Typical 2-Cys peroxiredoxins (2-Cys Prdxs) are proteins with antioxidant properties belonging to the thioredoxin peroxidase family. With their peroxidase activity, they contribute to the homeostatic control of reactive oxygen species (ROS) and, therefore, participate in various physiological functions, such as cell proliferation, differentiation, and apoptosis. Although Prdxs have been shown to be potential biomarkers for monitoring aquatic environments, minimal scientific attention has been devoted to describing their molecular architecture and function in marine invertebrates. Our study aims to clarify the protective role against stress induced by exposure to metals (Cu, Zn, and Cd) of three Prdxs (Prdx2, Prdx3, and Prdx4) in the solitary ascidian Ciona robusta, an invertebrate chordate. Here, we report a detailed pre- and post-translational regulation of the three Prdx isoforms. Data on intestinal mRNA expression, provided by qRT-PCR analyses, show a generalized increase for Prdx2, -3, and -4, which is correlated to metal accumulation. Furthermore, the increase in tissue enzyme activity observed after Zn exposure is slower than that observed with Cu and Cd. The obtained results increase our knowledge of the evolution of anti-stress proteins in invertebrates and emphasize the importance of the synthesis of Prdxs as an efficient way to face adverse environmental conditions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Nicole E. Avalon ◽  
Alison E. Murray ◽  
Hajnalka E. Daligault ◽  
Chien-Chi Lo ◽  
Karen W. Davenport ◽  
...  

Complex interactions exist between microbiomes and their hosts. Increasingly, defensive metabolites that have been attributed to host biosynthetic capability are now being recognized as products of host-associated microbes. These unique metabolites often have bioactivity targets in human disease and can be purposed as pharmaceuticals. Polyketides are a complex family of natural products that often serve as defensive metabolites for competitive or pro-survival purposes for the producing organism, while demonstrating bioactivity in human diseases as cholesterol lowering agents, anti-infectives, and anti-tumor agents. Marine invertebrates and microbes are a rich source of polyketides. Palmerolide A, a polyketide isolated from the Antarctic ascidian Synoicum adareanum, is a vacuolar-ATPase inhibitor with potent bioactivity against melanoma cell lines. The biosynthetic gene clusters (BGCs) responsible for production of secondary metabolites are encoded in the genomes of the producers as discrete genomic elements. A candidate palmerolide BGC was identified from a S. adareanum microbiome-metagenome based on a high degree of congruence with a chemical structure-based retrobiosynthetic prediction. Protein family homology analysis, conserved domain searches, active site and motif identification were used to identify and propose the function of the ∼75 kbp trans-acyltransferase (AT) polyketide synthase-non-ribosomal synthase (PKS-NRPS) domains responsible for the stepwise synthesis of palmerolide A. Though PKS systems often act in a predictable co-linear sequence, this BGC includes multiple trans-acting enzymatic domains, a non-canonical condensation termination domain, a bacterial luciferase-like monooxygenase (LLM), and is found in multiple copies within the metagenome-assembled genome (MAG). Detailed inspection of the five highly similar pal BGC copies suggests the potential for biosynthesis of other members of the palmerolide chemical family. This is the first delineation of a biosynthetic gene cluster from an Antarctic microbial species, recently proposed as Candidatus Synoicihabitans palmerolidicus. These findings have relevance for fundamental knowledge of PKS combinatorial biosynthesis and could enhance drug development efforts of palmerolide A through heterologous gene expression.


2021 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Lucia Manni ◽  
Federico Caicci ◽  
Chiara Anselmi ◽  
Virginia Vanni ◽  
Silvia Mercurio ◽  
...  

The swimming larva represents the dispersal phase of ascidians, marine invertebrates belonging to tunicates. Due to its adhesive papillae, the larva searches the substrate, adheres to it, and undergoes metamorphosis, thereby becoming a sessile filter feeding animal. The larva anatomy has been described in detail in a few species, revealing a different degree of adult structure differentiation, called adultation. In the solitary ascidian Halocynthia roretzi, a species reared for commercial purposes, embryogenesis has been described in detail, but information on the larval anatomy is still lacking. Here, we describe it using a comparative approach, utilizing 3D reconstruction, as well as histological/TEM observations, with attention to its papillae. The larva is comparable to those of other solitary ascidians, such as Ciona intestinalis. However, it displays a higher level of adultation for the presence of the atrium, opened outside by means of the atrial siphon, and the peribranchial chambers. It does not reach the level of complexity of the larva of Botryllus schlosseri, a phylogenetically close colonial ascidian. Our study reveals that the papillae of H. roretzi, previously described as simple and conform, exhibit dynamic changes during settlement. This opens up new considerations on papillae morphology and evolution and deserves to be further investigated.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xinguo Zhao ◽  
Shuge Sun ◽  
Wei Shi ◽  
Xuemei Sun ◽  
Yan Zhang ◽  
...  

The increasing underwater noise generated by anthropogenic activities has been widely recognized as a significant and pervasive pollution in the marine environment. Marine mussels are a family of sessile bivalves that attach to solid surfaces via the byssal threads. They are widely distributed along worldwide coastal areas and are of great ecological and socio-economic importance. Studies found that anthropogenic noise negatively affected many biological processes and/or functions of marine organisms. However, to date, the potential impacts of anthropogenic noise on mussel byssal attachment remain unknown. Here, the thick shell mussels Mytilus coruscus were exposed to an ambient underwater condition (∼50 dB re 1 μPa) or the playbacks of pile-driving noise (∼70 or ∼100 dB re 1 μPa) for 10 days. Results showed that the noise significantly reduced the secretion of byssal threads (e.g., diameter and volume) and weakened their mechanical performances (e.g., strength, extensibility, breaking stress, toughness and failure location), leading to a 16.95–44.50% decrease in mussel byssal attachment strength. The noise also significantly down-regulated the genes expressions of seven structural proteins (e.g., mfp-1, mfp-2, mfp-3, mfp-6, preCOL-P, preCOL-NG, and preCOL-D) of byssal threads, probably mediating the weakened byssal attachment. Given the essential functions of strong byssal attachment, the findings demonstrate that the increasing underwater anthropogenic noise are posing a great threat to mussel population, mussel-bed community and mussel aquaculture industry. We thus suggest that future work is required to deepen our understanding of the impacts of anthropogenic noise on marine invertebrates, especially these with limited locomotion ability, like bivalves.


Sign in / Sign up

Export Citation Format

Share Document