scholarly journals Global simulation of the Jovian magnetosphere: Transitional structure from the Io plasma disk to the plasma sheet

Author(s):  
T. Tanaka ◽  
Y. Ebihara ◽  
M. Watanabe ◽  
S. Fujita ◽  
R. Kataoka

2020 ◽  
Author(s):  
Christopher T.S Lorch ◽  
Licia C. Ray ◽  
Clare E.J. Watt ◽  
Robert J. Wilson ◽  
Frances Bagenal ◽  
...  

<p>New insights provided by Juno energetic particle detector measurements indicate signatures of Alfvénic acceleration are more common than previously anticipated. Studies at Earth show that Alfvén waves can substantially accelerate plasma within the magnetosphere. At Jupiter, it is now predicted that Alfvénic acceleration is the dominant mechanism for generating the planet's powerful aurora. This acceleration occurs when the plasma thermal velocity is approximately equal to the Alfvén velocity, which at Jupiter occurs around the plasma sheet boundary. Using Juno JADE and MAG data, we investigate the regions surrounding the plasma sheet boundary layer in order to identify signatures of Alfvénic activity. Our study finds correlations between inertial scale magnetic field perturbations and variations in the local plasma population. We suggest that these signatures may be linked to turbulence in the plasma disk, which could be a source of heating for magnetospheric plasma observed in other studies.</p>



1997 ◽  
Vol 24 (8) ◽  
pp. 869-872 ◽  
Author(s):  
Vytenis M. Vasyliūnas ◽  
Louis A. Frank ◽  
Kent L. Ackerson ◽  
William R. Paterson


1977 ◽  
Vol 25 (7) ◽  
pp. 673-679 ◽  
Author(s):  
H. Goldstein




2001 ◽  
Author(s):  
Paul Rothwell ◽  
William Burke ◽  
Carl-Gunne Falthammar




2020 ◽  
Vol 125 (8) ◽  
Author(s):  
X.‐J. Zhang ◽  
Q. Ma ◽  
A. V. Artemyev ◽  
W. Li ◽  
W. S. Kurth ◽  
...  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrzej Sikora ◽  
Dariusz Czylkowski ◽  
Bartosz Hrycak ◽  
Magdalena Moczała-Dusanowska ◽  
Marcin Łapiński ◽  
...  

AbstractThis paper presents the results of experimental investigations of the plasma surface modification of a poly(methyl methacrylate) (PMMA) polymer and PMMA composites with a [6,6]-phenyl-C61-butyric acid methyl ester fullerene derivative (PC61BM). An atmospheric pressure microwave (2.45 GHz) argon plasma sheet was used. The experimental parameters were: an argon (Ar) flow rate (up to 20 NL/min), microwave power (up to 530 W), number of plasma scans (up to 3) and, the kind of treated material. In order to assess the plasma effect, the possible changes in the wettability, roughness, chemical composition, and mechanical properties of the plasma-treated samples’ surfaces were evaluated by water contact angle goniometry (WCA), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The best result concerning the water contact angle reduction was from 83° to 29.7° for the PMMA material. The ageing studies of the PMMA plasma-modified surface showed long term (100 h) improved wettability. As a result of plasma treating, changes in the samples surface roughness parameters were observed, however their dependence on the number of plasma scans is irregular. The ATR-FTIR spectra of the PMMA plasma-treated surfaces showed only slight changes in comparison with the spectra of an untreated sample. The more significant differences were demonstrated by XPS measurements indicating the surface chemical composition changes after plasma treatment and revealing the oxygen to carbon ratio increase from 0.1 to 0.4.



Sign in / Sign up

Export Citation Format

Share Document