water contact angle
Recently Published Documents


TOTAL DOCUMENTS

309
(FIVE YEARS 113)

H-INDEX

22
(FIVE YEARS 5)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 104
Author(s):  
Panagiotis Dimitrakellis ◽  
François Faubert ◽  
Maxime Wartel ◽  
Evangelos Gogolides ◽  
Stéphane Pellerin

We studied the epoxy polymer surface modification using air plasma treatment in a Gliding Arc (GA) plasma reactor and a pulsed Dielectric Barrier Discharge (DBD). We employed optical emission spectroscopy (OES) measurements to approximate the vibrational and rotational temperatures for both plasma sources, as well as surface temperature measurements with fiber optics and IR thermography to corelate with the corresponding hydrophilization of the epoxy material. Water contact angle measurements revealed a rapid hydrophilization for both plasma sources, with a slightly more pronounced effect for the air DBD treatment. Ageing studies revealed stable hydrophilicity, with water contact angle saturating at values lower than 50°, corresponding to a >50% decrease compared to the untreated epoxy polymer. ATR-FTIR spectroscopy studies showed an additional absorption band assigned to carbonyl group, with its peak intensity being higher for the DBD treated surfaces. The spectra were also correlated with the surface functionalization via the relative peak area ratio of carbonyl to oxirane and benzene related bands. According to SEM imaging, GA plasma treatment led to no apparent morphological change, contrary to DBD treatment, which resulted in nano-roughness formation. The enhanced surface oxidation as well as the nano-roughness formation on epoxy surface with the air DBD treatment were found to be responsible for the stable hydrophilization.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 122
Author(s):  
Xun Hui Wu ◽  
Yoon Yee Then

Materials with superhydrophobic surfaces have received vast attention in various industries due to their valuable properties, such as their self-cleaning and antifouling effects. These promising superhydrophobic properties are taken into high priority, particularly for medical devices and applications. The development of an ideal superhydrophobic surface is a challenging task and is constantly progressing. Various strategies have been introduced; however, a minority of them are cost-effective. This work presents a facile fabrication of the superhydrophobic surface by using graphene and titanium dioxide (TiO2) nanoparticles. The graphene and TiO2 hybrid nanoparticles are dip-coated on a biodegradable thermoplastic poly(lactic acid) (PLA) substrate. The thermoplastic PLA is approved by the Food and Drug Administration (FDA), and is widely utilized in medical devices. The graphene/TiO2 coating is substantiated to transform the hydrophilic PLA film into superhydrophobic biomaterials that can help to reduce hazardous medical-device complications. The surface wettability of the graphene/TiO2 nanoparticle-coated PLA surface was evaluated by measuring the apparent water contact angle. The surface chemical composition and surface morphology were analyzed via Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The graphene/TiO2-coated PLA film achieved superhydrophobic properties by demonstrating a water contact angle greater than 150°. The water contact angle of the graphene/TiO2 coating increased along with the concentration of the nanoparticles and the ratio of TiO2 to graphene. Moreover, the graphene/TiO2 coating exhibited excellent durability, whereby the contact angle of the coated surface remained unchanged after water immersion for 24 h. The duration of the effectiveness of the superhydrophobic coating suggests its suitability for medical devices, for which a short duration of administration is involved. This study reports an easy-to-replicate and cost-effective method for fabricating superhydrophobic graphene/TiO2-coated surfaces, which additionally substantiates a potential solution for the manufacturing of biomaterials in the future.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 8
Author(s):  
Yunzhao Guo ◽  
Wenbo Qi ◽  
Kaiyun Fu ◽  
Xianfu Chen ◽  
Minghui Qiu ◽  
...  

Ceramic membrane contactors hold great promise for CO2 desorption due to their high mass transfer area as well as the favorable characteristics of ceramic materials to resist harsh operating conditions. In this work, a hydrophobic tubular asymmetric alpha-alumina (α-Al2O3) membrane was prepared by grafting a hexadecyltrimethoxysilane ethanol solution. The hydrophobicity and permeability of the membrane were evaluated in terms of water contact angle and nitrogen (N2) flux. The hydrophobic membrane had a water contact angle of ~132° and N2 flux of 0.967 × 10−5 mol/(m2∙s∙Pa). CO2 desorption from the aqueous monoethanolamine (MEA) solution was conducted through the hydrophobic tubular ceramic membrane contactor. The effects of operating conditions, such as CO2 loading, liquid flow rate, liquid temperature and permeate side pressure, on CO2 desorption flux were investigated. Moreover, the stability of the membrane was evaluated after the immersion of the ceramic membrane in an MEA solution at 373 K for 30 days. It was found that the hydrophobic α-Al2O3 membrane had good stability for CO2 desorption from the MEA solution, resulting in a <10% reduction of N2 flux compared to the membrane without MEA immersion.


2021 ◽  
Vol 33 (4) ◽  
pp. 25-30
Author(s):  
Ahmed A Mohammed ◽  
Thekra I Hamad

Aim: To evaluate the wettability and microhardness of Zirconium (ZrO2) dental material when coated with different concentrations of Faujasite. Materials and methods: 30 circular disks produced from ZrO2, then each group is classified into 10 control groups, 10 coated groups with 3% Faujasite, and 10 coated groups with 7% faujasite by electro-spun tool to study variable properties in hardness and water contact angle of implant materials. Results: This study stated the high hardness in 7% of faujasite concentration for ZrO2, in addition, the contact angle decreased gradually until reach 0 ᵒ in 7% concentration of faujasite with ZrO2 Conclusion: Water contact angle (WCA) declined till disappeared in (7% wt.) of faujasite coated with the ZrO2 group, also in the same group the microhardness became high compared with other groups due to alteration in surface morphology of substrate, and properties of coated material.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4312
Author(s):  
Pedro J. Rivero ◽  
Juan P. Fuertes ◽  
Adrián Vicente ◽  
Álvaro Mata ◽  
José F. Palacio ◽  
...  

In this work, a one-step electrospinning technique has been implemented for the design and development of functional surfaces with a desired morphology in terms of wettability and corrosion resistance by using polycaprolactone (PCL) and zinc oxide nanoparticles (ZnO NPs). The surface morphology has been characterized by confocal microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle (WCA), whereas the corrosion resistance has been evaluated by Tafel polarization curves. Strict control over the input operational parameters (applied voltage, feeding rate, distance tip to collector), PCL solution concentration and amount of ZnO NPs have been analyzed in depth by showing their key role in the final surface properties. With this goal in mind, a design of experiment (DoE) has been performed in order to evaluate the optimal coating morphology in terms of fiber diameter, surface roughness (Ra), water contact angle (WCA) and corrosion rate. It has been demonstrated that the solution concentration has a significant effect on the resultant electrospun structure obtained on the collector with the formation of beaded fibers with a higher WCA value in comparison with uniform bead-free fibers (dry polymer deposition or fiber-merging aspect). In addition, the presence of ZnO NPs distributed within the electrospun fibers also plays a key role in corrosion resistance, although it also leads to a decrease in the WCA. Finally, this is the first time that an exhaustive analysis by using DoE has been evaluated for PCL/ZnO electrospun fibers with the aim to optimize the surface morphology with the better performance in terms of corrosion resistance and wettability.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kai Yu ◽  
Minting Wan ◽  
Kui Shi ◽  
Longjian Xue ◽  
Zhi Chen ◽  
...  

This study investigates the repair bond strength of aged resin composites after removing different thicknesses, determine the repair performance using the same or different resin composites and describe the treated surfaces after ageing. Seventy simulated class I cavities were prepared in extracted human third molars were randomly divided into two groups and restored with a nanofilled (Filtek Z350) or a microhybrid (Clearfil APX) composite. Five specimens without ageing in each group acted as a positive control for microtensile bond strength (MTBS) test. After thermocycling, each group was randomly divided into two subgroups: Group RT1, 1 mm removed and Group RT3, 3 mm removed, followed by roughening. Ten specimens in each subgroup were repaired with the same or different composites, and MTBS tests were conducted. The surface roughness (Sa), and water contact angle of the remaining five specimens in each subgroup were measured. In every combination group, Group RT3 showed significantly higher MTBS values than Group RT1, and identical composite was not compulsory for higher repair bond strength. Removal thickness had no significant effect on the Sa in same composite group. In both the Z350 and APX groups, the water contact angle decreased with increasing removal thickness.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1467
Author(s):  
Yin Zhang ◽  
Min Kang ◽  
Nyambura Samuel Mbugua ◽  
Bertrand Vigninou Gbenontin ◽  
Meifu Jin ◽  
...  

In this study, Ni–Co–P–BN(h)–Al2O3 binary nanocomposite coatings were fabricated on steel C1045 substrates by jet electrodeposition. The samples were then processed using self-made laser processing equipment to investigate the influence of long-pulse laser processing parameters variation on samples’ surface morphology, roughness and wettability. Additionally, the properties of samples before and after laser processing were analyzed and characterized. The results showed that the surface morphologies, surface roughness and wettability of samples were affected by laser output power, pulse width and spot-to-spot distance variation. A convex dome was formed on the samples’ surface at a low laser output power and a suitable pulse width, while a dimple was formed on the samples’ surface at a high laser output power. The surface roughness and water contact angle of samples increased with the rise in laser output power or pulse width. The water contact angle decreased with the rise in the spot-to-spot distance, and the water contact angle reached a maximum value of 139.8° with a laser output power of 50 W, a pulse width of 100 µs and a spot-to-spot distance of 150 µm. The samples after laser processing exhibited a higher wettability, microhardness and wear resistance compared to those of the normal samples. The microhardness of the heat-affected zone reached a maximum value of 812.1 HV0.1, and the wear scar width of the samples reached a minimum value of 360.5 µm. However, after laser processing, the samples’ seawater corrosion resistance decreased slightly.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2567
Author(s):  
Paulina Štreimikytė ◽  
Dalia Urbonavičienė ◽  
Aistė Balčiūnaitienė ◽  
Pranas Viškelis ◽  
Jonas Viškelis

Optimization of the extraction procedure using a multienzymes cocktail for common buckwheat (Fagopyrum esculentum M.) is important due to the yield, fermentable sugars, oligosaccharides and bioactive compounds for creating higher added value products. This study was undertaken to find out the optimum multienzymes-water extraction on yield and total phenolic compounds for common Buckwheat using response surface methodology (RSM). Three independent variables, time (2, 13, and 24 h), temperature (60 °C, 70 °C, 80 °C), and non-starch polysaccharide (NSP) enzymes mixture (0.10, 0.55, and 1.00 mL), were analyzed to optimize the response variables. NSP hydrolyzing enzymes, cellulase, xylanase, and β-glucanase, were produced by Trichoderma reesei. Estimated optimum conditions for F. esculentum were found: time—2 h, temperature—65 °C, and cellulase activity—8.6 CellG5 Units/mL. Different optimization run samples were collected and lyophilized for further analysis until the hydrophilic property using the water contact angle methodology and rutin content using HPLC was determined. Results indicated NSP enzymes activity did not differ between water contact angles after 13 h of enzymatic water extraction. However, longer fermentation time (24 h) decreased static water contact angle by approximately 3–7° for lyophilized water extract and 2–7° for solid fraction after fermentation. It implies enzymatic hydrolysis during water extraction increased hydrophilic properties in solid fraction and decreased hydrophilicity in water fraction due to the enzymes cleaved glycosidic bonds releasing water-soluble compounds.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1399
Author(s):  
Yufen Zhang ◽  
Qingcheng Du ◽  
Tiegui Lin ◽  
Shawei Tang ◽  
Jin Hu

Calcium stearate hydrophobic coatings with a hierarchical micro/nanostructure were prepared on 65Mn steel using direct current electrodeposition. The deposition time has a visible influence on the morphology, surface wettability and thickness of the coatings, but little effect on the phase composition. The corrosion behavior of the coated samples in 3.5 wt.% NaCl solution was also investigated. The prepared coatings at different deposition times show different corrosion resistance. The coating fabricated at 30 min has the best corrosion resistance due to the highest water contact angle and thicker coating.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1366
Author(s):  
Jinyuan Zhang ◽  
Hui Zhang ◽  
Wenjun Li ◽  
Limeng Yang ◽  
Hailiang Wu ◽  
...  

In this study, the photocatalytic properties of novel keratin char-TiO2 composite films, made through the calcination of wool keratin coatings containing TiO2 precursors at 400 °C, were investigated for the photodegradation of organic contaminants under visible light irradiation. Its structural characteristics and photocatalytic performance were systematically examined. It was shown that a self-cleaning hydrophobic keratin char-TiO2 composite film containing meso- and micro-pores was formed after the keratin—TiO2 precursors coating was calcined. In comparison with calcinated TiO2 films, the keratin char-TiO2 composite films doped with the elements of C, N, and S from keratins resulted in decreased crystallinity and a larger water contact angle. The bandgap of the char-TiO2 composite films increased slightly from 3.26 to 3.32 eV, and its separation of photogenerated charge carriers was inhibited to a certain degree. However, it exhibited higher photodegradation efficiency to methyl blue (MB) effluents than the pure calcinated TiO2 films. This was mainly because of its special porous structure, large water contact angle, and high adsorption energy towards organic pollutants, confirmed by the density functional theory calculations. The main active species were 1O2 radicals in the MB photodegradation process.


Sign in / Sign up

Export Citation Format

Share Document