Revisiting the Atlantic South Equatorial Current

Author(s):  
C. D. Luko ◽  
I. C. A. Silveira ◽  
I. T. Simoes‐Sousa ◽  
J. M. Araujo ◽  
A. Tandon
2015 ◽  
Vol 45 (6) ◽  
pp. 1757-1770 ◽  
Author(s):  
Zhaohui Chen ◽  
Lixin Wu

AbstractThe seasonal variation of the South Equatorial Current (SEC) bifurcation off the Australian coast in the South Pacific (SP) is investigated with observations and a nonlinear, reduced-gravity, primitive equation model of the upper ocean. The mean SEC bifurcation latitude (SBL) integrated over the upper thermocline is around 17.5°S, almost 2° south of the position predicted by Sverdrup theory. For its seasonal variation, the SBL reaches its southernmost position in June/July and its northernmost position in November/December. The south–north migration of 2.7° is twice as large as its counterpart in the North Pacific. It is found that the large seasonal amplitude of the SBL results from the combined effect of Low-Lat-SP and Non-Low-Lat-SP processes. The Low-Lat-SP process (referred to as the Rossby wave dynamics forced by the wind stress curl over the low-latitude SP) accounts for almost ⅔ of the SBL seasonal variability, and the Non-Low-Lat-SP processes account for ⅓. Both of these processes are responsible for its south–north migration but in different ways. The Low-Lat-SP wind forcing determines the offshore upper-layer thickness (ULT) via Rossby wave propagation, while the Non-Low-Lat-SP wind forcing determines the alongshore ULT via coastal Kelvin wave propagation. A simple bifurcation model is proposed under the framework of linear Rossby wave dynamics. It is found that the seasonal bifurcation latitude is predominantly determined by the spatial pattern of the wind and baroclinic Rossby wave propagation. This model explains the roles of local/remote wind forcing and baroclinic adjustment in the south–north migration and peak seasons of the bifurcation latitude.


2018 ◽  
Vol 171 ◽  
pp. 77-96 ◽  
Author(s):  
A.L. Aguiar ◽  
M. Cirano ◽  
M. Marta-Almeida ◽  
G.C. Lessa ◽  
A. Valle-Levinson

2008 ◽  
Vol 38 (9) ◽  
pp. 1965-1978 ◽  
Author(s):  
Susan E. Wijffels ◽  
Gary Meyers ◽  
J. Stuart Godfrey

Abstract Twenty years of monthly or more frequent repeat expendable bathythermograph data are used to estimate the mean geostrophic velocity and transport relative to 750 m of the Indonesian Throughflow (ITF) and its partitioning through the major outflow straits into the Indian Ocean. Ekman transports are estimated from satellite and atmospheric reanalysis wind climatologies. A subsurface maximum near 100 m characterizes the geostrophic ITF, but Ekman flows drive a warm near-surface component as well. A subsurface intensified fresh Makassar Jet feeds the Lombok Strait Throughflow (∼2 Sv; 1Sv ≡ 106 m3 s−1) and an eastward flow along the Nusa Tenggara island chain [the Nusa Tenggara Current (6 Sv)]. This flow feeds a relatively cold 3.0-Sv flow through the Ombai Strait and Savu Sea. About 4–5 Sv pass through Timor Passage, fed by both the Nusa Tenggara Current and likely warmer and saltier flow from the eastern Banda Sea. The Ombai and Timor Throughflow feature distinctly different shear profiles; Ombai has deep-reaching shear with a subsurface velocity maximum near 150 m and so is cold (∼15.5°–17.1°C), while Timor Passage has a surface intensified flow and is warm (∼21.6°–23°C). At the western end of Timor Passage the nascent South Equatorial Current is augmented by recirculation from a strong eastward shallow flow south of the passage. South of the western tip of Java are two mean eastward flows—the very shallow, warm, and fresh South Java Current and a cold salty South Java Undercurrent. These, along with the inflow of the Eastern Gyral Current, recirculate to augment the South Equatorial Current, and greatly increase its salinity compared to that at the outflow passages. The best estimate of the 20-yr-average geostrophic plus Ekman transport is 8.9 ± 1.7 Sv with a transport-weighted temperature of 21.2°C and transport-weighted salinity of 34.73 near 110°E. The warm temperatures of the flow can be reconciled with the much cooler estimates based on mooring data in Makassar Strait by accounting for an unmeasured barotropic and deep component, and local surface heat fluxes that warm the ITF by 2°–4°C during its passage through the region.


2007 ◽  
Vol 37 (1) ◽  
pp. 16-30 ◽  
Author(s):  
Regina R. Rodrigues ◽  
Lewis M. Rothstein ◽  
Mark Wimbush

Abstract In this study, a reduced-gravity, primitive equation OGCM is used to investigate the seasonal variability of the bifurcation of the South Equatorial Current (SEC) into the Brazil Current (BC) to the south and the North Brazil Undercurrent/Current (NBUC/NBC) system to the north. Annual mean meridional velocity averaged within a 2° longitude band off the South American coast shows that the SEC bifurcation occurs at about 10°–14°S near the surface, shifting poleward with increasing depth, reaching 27°S at 1000 m, in both observations and model. The bifurcation latitude reaches its southernmost position in July (∼17°S in the top 200 m) and its northernmost position in November (∼13°S in the top 200 m). The model results show that most of the seasonal variability of the bifurcation latitude in the upper thermocline is associated with changes in the local wind stress curl due to the annual north–south excursion of the marine ITCZ complex. As the SEC bifurcation latitude moves south (north) the NBUC transport increases (decreases) and the BC transport decreases (increases). The remote forcing (i.e., westward propagation of anomalies) appears to have a smaller impact on the seasonal variability of the bifurcation in the upper thermocline.


Geology ◽  
2021 ◽  
Author(s):  
Christian Betzler ◽  
Sebastian Lindhorst ◽  
Thomas Lüdmann ◽  
John J. Reijmer ◽  
Juan-Carlos Braga ◽  
...  

Carbonate platforms are built mainly by corals living in shallow light-saturated tropical waters. The Saya de Malha Bank (Indian Ocean), one of the world’s largest carbonate platforms, lies in the path of the South Equatorial Current. Its reefs do not reach sea level, and all carbonate production is mesophotic to oligophotic. New geological and oceanographic data unravel the evolution and environment of the bank, elucidating the factors determining this exceptional state. There are no nutrient-related limitations for coral growth. A switch from a rimmed atoll to a current-exposed system with only mesophotic coral growth is proposed to have followed the South Equatorial Current development during the late Neogene. Combined current activity and sea-level fluctuations are likely controlling factors of modern platform configuration.


Sign in / Sign up

Export Citation Format

Share Document