Gravity waves generated by a tropical cyclone during the STEP tropical field program: A case study

1993 ◽  
Vol 98 (D5) ◽  
pp. 8611-8638 ◽  
Author(s):  
L. Pfister ◽  
K. R. Chan ◽  
T. P. Bui ◽  
S. Bowen ◽  
M. Legg ◽  
...  
2020 ◽  
Vol 125 (10) ◽  
Author(s):  
K. K. Ajith ◽  
Guozhu Li ◽  
S. Tulasi Ram ◽  
M. Yamamoto ◽  
K. Hozumi ◽  
...  

2015 ◽  
Vol 71 (2) ◽  
pp. I_1513-I_1518 ◽  
Author(s):  
Yoko SHIBUTANI ◽  
Sota NAKAJO ◽  
Nobuhito MORI ◽  
Sooyoul KIM ◽  
Hajime MASE

1983 ◽  
Vol 40 (12) ◽  
pp. 2804-2830 ◽  
Author(s):  
James G. Stobie ◽  
Franco Einaudi ◽  
Louis W. Uccellini

2019 ◽  
Author(s):  
Bingchuan Nie ◽  
Qingyong Wuxi ◽  
Jiachun Li ◽  
Feng Xu

Abstract. A methodology for assessing the storm tide inundation under TCI (tropical cyclone intensification) and SLR (sea level rise) is proposed, which integrates the trend analysis, numerical analysis and GIS-based analysis. In the trend analysis, the potential TCI and SLR can be estimated based on the long-term historical data of TC (tropical cyclone) and MSL (mean sea level) considering the non-stationary and spatially non-uniform effect; the numerical simulation is relied on the ADCIRC+SWAN model, which is capable of taking into account the tide-surge-wave coupling effect to improve the precision of water elevation prediction; the water elevation is then analyzed on the GIS platform, the potential inundation regions can be identified. Based on this methodology, a case study for the Southeast China coast, one of the storm surge prone areas in China, is presented. The results show that the high water elevation tends to occur in the bays and around the estuaries, the maximal water elevations caused by the typhoon wind of 100-year recurrence period can reach as high as 6.06 m, 5.82 m and 5.67 m around Aojiang, Feiyunjiang and Oujiang river estuaries, respectively. Non-stationary TCI and SLR due to climate change can further deteriorate the situation and enhance the risk of inundation there, i.e. the potential inundation area would expand by 108 % to about 798 km2 compared with the situation without considering TCI and SLR. In addition, the remotely sensed maps and inundation durations of the hardest hit regions are provided, which will aid the prevention and mitigation of storm tide inundation hazard and future coastal management there.


2013 ◽  
Vol 13 (4) ◽  
pp. 10757-10807 ◽  
Author(s):  
F. Chane Ming ◽  
C. Ibrahim ◽  
S. Jolivet ◽  
P. Keckhut ◽  
Y.-A. Liou ◽  
...  

Abstract. Activity and spectral characteristics of gravity-waves (GWs) are analyzed during tropical cyclone (TC) Ivan (2008) in the troposphere and lower stratosphere using radiosonde and GPS radio occultation data, ECMWF outputs and simulations of French numerical model Meso-NH with vertical resolution varying between 150 m near the surface and 500 m in the lower stratosphere. Conventional methods for GW analysis and signal and image processing tools provide information on a wide spectrum of GWs with horizontal wavelengths of 40–1800 km and short vertical wavelengths of 0.6–10 km respectively and periods of 20 min–2 days. MesoNH model, initialized with Aladin-Réunion analyses, produces realistic and detailed description of TC dynamics, GWs, variability of the tropospheric and stratospheric background wind and TC rainband characteristics at different stages of TC Ivan. In particular a dominant eastward propagating TC-related quasi-inertia GW is present during intensification of TC Ivan with horizontal and vertical wavelengths of 400–600 km and 1.5–3.5 km respectively during intensification. A wavenumber-1 vortex Rossby wave is identified as a source of this medium-scale mode while short-scale modes located at north-east and south-east of the TC could be attributed to strong localized convection in spiral bands resulting from wavenumber-2 vortex Rossby waves. Meso-NH simulations also reveal high-frequency GWs with horizontal wavelengths of 20–80 km near the TC eye and high-frequency GWs-related clouds behind TC Ivan. In addition, GWs produced during landfall are likely to strongly contribute to background wind in the middle and upper troposphere as well as the stratospheric quasi-biennial oscillation.


Sign in / Sign up

Export Citation Format

Share Document