lower stratosphere
Recently Published Documents


TOTAL DOCUMENTS

1866
(FIVE YEARS 314)

H-INDEX

87
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Qing-Bin Lu

Abstract This paper reveals a new ozone hole that exists in the lower stratosphere over the tropics (30°N-30°S) across the seasons since the 1980s, where an ozone hole is defined as an area of ozone loss larger than 25% compared with the undisturbed atmosphere. The depth of this all-season tropical ozone hole is comparable to that of the well-known springtime ozone hole over Antarctica, while its area is about seven times that of the latter. At the center of the deepest tropical or Antarctic ozone hole, approximately 80% of the normal ozone value is depleted, whereas annual mean ozone depletion in the lower stratosphere over the tropics due to the coldest temperature is about 1.6 times that over Antarctica and is about 7.7 times that over the Arctic. The whole-year ozone hole over the tropics could cause a serious global concern as it can lead to increases in ground-level ultraviolet radiation and affect 50% of Earth's surface area, which is home to approximately 50% of the world's population. Moreover, since ozone loss is well-known to lead to stratospheric cooling, the presence of the all-season tropical ozone hole and the seasonal polar ozone holes is equivalent to the formation of three ‘temperature holes’ in the global lower stratosphere. These findings will play a far-reaching role in understanding fundamental atmospheric processes and global climate change.


2022 ◽  
Author(s):  
Chunming Huang ◽  
Lingyun Yang ◽  
Shaodong Zhang ◽  
Kaiming Huang ◽  
Yun Gong ◽  
...  

Abstract Although the characteristics of the traveling 10-day waves (10DWs) above the middle stratosphere have been well explored, little research has been performed on the counterpart in the troposphere and lower stratosphere (TLS). In the present study, we use radiosonde observations and MERRA-2 data in 2020 to characterize traveling 10DWs in mid-latitudes in the TLS. Single-site observations in both hemispheres show that strong 10DW activities are always accompanied by strong eastward jets (10-13 km). MERRA-2 data indicates that in the troposphere the eastward-propagating modes with larger wavenumbers, i.e., E3, E4, E5 and E6 are dominant. While in the lower stratosphere the eastward- and westward-propagating modes with small zonal wavenumbers e.g., 1 and 2, are dominant. Further research on E3, E4, E5 and E6 modes in the troposphere of both hemispheres shows that all the wave activities are positively correlated to the background zonal wind. The refractive index squared reveal that a strong eastward jet is suitable for these four modes to propagate. However, just above the jet, the eastward wind decreases with altitude, and a thick evanescence region emerges above 15 km. E3, E4, E5 and E6 10DWs cannot propagate upward across the tropopause; as such this can explain why these four modes are weak or even indiscernible in the stratosphere and above. In the troposphere, E5 10DW at 32°S is the most dominant mode in 2020. A case study of the anomalously strong E5 10DW activity on May 12, 2020 indicates that the wave amplification resulted from the upward and equatorward transmission of wave energy flows. Moreover, the tropopause and equatorial region can prevent the propagations of wave energy flows of E5 10DW.


2022 ◽  
Author(s):  
Chong Chen ◽  
Xianghui Xue ◽  
Dongsong Sun ◽  
Ruocan Zhao ◽  
Yuli Han ◽  
...  

MAUSAM ◽  
2022 ◽  
Vol 44 (2) ◽  
pp. 175-178
Author(s):  
K. JAYARAMAN ◽  
D.D. CHAKRABORTY ◽  
S.P. BHAGWAT

The terrestrial radiant fluxes are being measured regularly at Pune using a balloon-borne radiometersonde. The net terrestrial radiant fluxes obtained from these measurements over a decade have been studied and results presented. The net terrestrial radiant flux increases with height and reaches a maximum around 12 km and then the rate of increase slows down near tropopause. In the lower stratosphere the fluxes again Increase before reaching a nearly steady value at around 25 km. The clouds and rainfall distributions seriously distort the radiation field.  


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 68
Author(s):  
Dan Chen ◽  
Tianjiao Zhou ◽  
Dong Guo ◽  
Shuhao Ge

This study used the FLEXPART-WRF trajectory model to perform forward and backward simulations of a cut-off low (COL) event over northeast Asia. The analysis reveals the detailed trajectories and sources of air masses within the COL. Their trajectories illustrate the multi-timescale deep intrusion processes in the upper troposphere and lower stratosphere (UTLS) caused by the COL. The processes of air intrusion from the lower stratosphere to the middle troposphere can be divided into three stages: a slow descent stage, a rapid intrusion stage and a relatively slow intrusion stage. A source analysis of targeted air masses at 300 hPa and 500 hPa shows that the ozone-rich air in the COL primarily originated from an extratropical cyclone over central Siberia and from the extratropical jet stream. The sources of air masses in different parts of the COL show some differences. These results can help explain the ozone distribution characteristics in the main body of a COL at 300 hPa and at 500 hPa that were revealed in a previous study.


MAUSAM ◽  
2021 ◽  
Vol 43 (2) ◽  
pp. 199-204
Author(s):  
R. ANANTHAKRISHNAN ◽  
M. K. SOMAN

The daily aerological data of 23 RS/R W stations for the p~ak monsoon months of July and August 1978, 1979 and 1980 for 25 levels from the surface to the lower stratosphere have been analysed. The standard deviations of the daily values of temperature are found to be about 1 .5 to 2° C in th9 lower troposphere increasing to about twice this value at upper levels. The standard deviations of geopotential heights or isobaric levels range from 15to 30 gpm in the lower troposphere increasing to about 4 times this value at upper levels. The horizontal gradients in the mean fields of temperature and geopotential height between pairs of stations in the network show several inconsistencies which are illustrated with examples. The existence of such inconsistencies in the mean fields for several years has also been found from an examination of CLIMAT -TEMP data of the stations up to 1989. These findings impose limitations on the utilisation of the data in synoptic and climatological studies.


2021 ◽  
Vol 21 (24) ◽  
pp. 18641-18668
Author(s):  
Cornelia Strube ◽  
Peter Preusse ◽  
Manfred Ern ◽  
Martin Riese

Abstract. In the southern winter polar stratosphere, the distribution of gravity wave momentum flux in many state-of-the-art climate simulations is inconsistent with long-time satellite and superpressure balloon observations around 60∘ S. Recent studies hint that a lateral shift between prominent gravity wave sources in the tropospheric mid-latitudes and the location where gravity wave activity is present in the stratosphere causes at least part of the discrepancy. This lateral shift cannot be represented by the column-based gravity wave drag parameterisations used in most general circulation models. However, recent high-resolution analysis and re-analysis products of the European Centre for Medium-Range Weather Forecasts Integrated Forecast System (ECMWF-IFS) show good agreement with the observations and allow for a detailed investigation of resolved gravity waves, their sources, and propagation paths. In this paper, we identify resolved gravity waves in the ECMWF-IFS analyses for a case of high gravity wave activity in the lower stratosphere using small-volume sinusoidal fits to characterise these gravity waves. The 3D wave vector together with perturbation amplitudes, wave frequency, and a fully described background atmosphere are then used to initialise the Gravity Wave Regional or Global Ray Tracer (GROGRAT) gravity wave ray tracer and follow the gravity waves backwards from the stratosphere. Finally, we check for the indication of source processes on the path of each ray and, thus, quantitatively attribute gravity waves to sources that are represented within the model. We find that stratospheric gravity waves are indeed subject to far (>1000 km) lateral displacement from their sources, which already take place at low altitudes (<20 km). Various source processes can be linked to waves within stratospheric gravity wave (GW) patterns, such as the orography equatorward of 50∘ S and non-orographic sources above the Southern Ocean. These findings may explain why superpressure balloons observe enhanced gravity wave momentum fluxes in the lower stratosphere over the Southern Ocean despite an apparent lack of sources at this latitude. Our results also support the need to improve gravity wave parameterisations to account for meridional propagation.


2021 ◽  
Vol 21 (24) ◽  
pp. 18531-18542
Author(s):  
William J. Randel ◽  
Fei Wu ◽  
Alison Ming ◽  
Peter Hitchcock

Abstract. Observations show strong correlations between large-scale ozone and temperature variations in the tropical lower stratosphere across a wide range of timescales. We quantify this behavior using monthly records of ozone and temperature data from Southern Hemisphere Additional Ozonesonde (SHADOZ) tropical balloon measurements (1998–2016), along with global satellite data from Aura microwave limb sounder and GPS radio occultation over 2004–2018. The observational data demonstrate strong in-phase ozone–temperature coherence spanning sub-seasonal, annual and interannual timescales, and the slope of the temperature–ozone relationship (T / O3) varies as a function of timescale and altitude. We compare the observations to idealized calculations based on the coupled zonal mean thermodynamic and ozone continuity equations, including ozone radiative feedbacks on temperature, where both temperature and ozone respond in a coupled manner to variations in the tropical upwelling Brewer–Dobson circulation. These calculations can approximately explain the observed (T / O3) amplitude and phase relationships, including sensitivity to timescale and altitude, and highlight distinct balances for “fast” variations (periods < 150 d, controlled by transport across background vertical gradients) and “slow” coupling (seasonal and interannual variations, controlled by radiative balances).


2021 ◽  
Vol 21 (24) ◽  
pp. 18433-18464
Author(s):  
Michael Höpfner ◽  
Oliver Kirner ◽  
Gerald Wetzel ◽  
Björn-Martin Sinnhuber ◽  
Florian Haenel ◽  
...  

Abstract. We present the first observational dataset of vertically resolved global stratospheric BrONO2 distributions from July 2002 until April 2012 and compare them to results of the atmospheric chemical climate model ECHAM/MESSy Atmospheric Chemistry (EMAC). The retrieved distributions are based on space-borne measurements of infrared limb-emission spectra recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat. The derived vertical profiles of BrONO2 volume mixing ratios represent 10∘ latitude bins and 3 d means, separated into sunlit observations and observations in the dark. The estimated uncertainties are around 1–4 pptv, caused by spectral noise for single profiles as well as for further parameter and systematic errors which may not improve by averaging. Vertical resolutions range from 3 to 8 km between 15 and 35 km altitude. All leading modes of spatial and temporal variability of stratospheric BrONO2 in the observations are well replicated by the model simulations: the large diurnal variability, the low values during polar winter as well as the maximum values at mid and high latitudes during summer. Three major differences between observations and model results are observed: (1) a model underestimation of enhanced BrONO2 in the polar winter stratosphere above about 30 km of up to 15 pptv, (2) up to 8 pptv higher modelled values than observed globally in the lower stratosphere up to 25 km, most obvious during night, and (3) up to 5 pptv lower modelled concentrations at tropical latitudes between 27 and 32 km during sunlit conditions. (1) is explained by the model missing enhanced NOx produced in the mesosphere and lower thermosphere subsiding at high latitudes in winter. This is the first time that observational evidence for enhancement of BrONO2 caused by mesospheric NOx production is reported. The other major inconsistencies (2, 3) between EMAC model results and observations are studied by sensitivity runs with a 1D model. These tentatively hint at a model underestimation of heterogeneous loss of BrONO2 in the lower stratosphere, a simulated production of BrONO2 that is too low during the day as well as strongly underestimated BrONO2 volume mixing ratios when loss via reaction with O(3P) is considered in addition to photolysis. However, considering the uncertainty ranges of model parameters and of measurements, an unambiguous identification of the causes of the differences remains difficult. The observations have also been used to derive the total stratospheric bromine content relative to years of stratospheric entry between 1997 and 2007. With an average value of 21.2±1.4 pptv of Bry at mid latitudes where the modelled adjustment from BrONO2 to Bry is smallest, the MIPAS data agree with estimates of Bry derived from observations of BrO as well as from MIPAS-Balloon measurements of BrONO2.


Sign in / Sign up

Export Citation Format

Share Document