The 22-year variation of geomagnetic activity: Implications for the polar magnetic field of the Sun

1995 ◽  
Vol 22 (23) ◽  
pp. 3287-3288 ◽  
Author(s):  
C. T. Russell ◽  
T. Mulligan
2000 ◽  
Vol 179 ◽  
pp. 193-196
Author(s):  
V. I. Makarov ◽  
A. G. Tlatov

AbstractA possible scenario of polar magnetic field reversal of the Sun during the Maunder Minimum (1645–1715) is discussed using data of magnetic field reversals of the Sun for 1880–1991 and the14Ccontent variations in the bi-annual rings of the pine-trees in 1600–1730 yrs.


2018 ◽  
Vol 13 (S340) ◽  
pp. 83-84
Author(s):  
Kunjal Dave ◽  
Wageesh Mishra ◽  
Nandita Srivastava ◽  
R. M. Jadhav

AbstractIt has been established that Coronal Mass Ejections (CMEs) may have significant impact on terrestrial magnetic field and lead to space weather events. In the present study, we selected several CMEs which are associated with filament eruptions on the Sun. We attempt to identify the presence of filament material within ICME at 1AU. We discuss how different ICMEs associated with filaments lead to moderate or major geomagnetic activity on their arrival at the Earth. Our study also highlights the difficulties in identifying the filament material at 1AU within isolated and in interacting CMEs.


2006 ◽  
Vol 2 (14) ◽  
pp. 273-274 ◽  
Author(s):  
Elena E. Benevolenskaya

AbstractThe polar magnetic fields on the Sun have been an attractive subject for solar researches since Babcock measured them in solar cycle 19. One of the remarkable features of the polar magnetic fields is their reversal during the maxima of 11-year sunspot cycles. I have present results of the investigations of the polar magnetic field using SOHO-mdi data. It is found, that the polar magnetic field reversal is detected with mdi data for polar region within 78°–88°. The North Pole has changed polarity in CR1975 (April 2001). The South reversed later in CR1980 (September 2001). The total unsigned magnetic flux does not show the dramatic decreasing during the polar reversals due to omnipresent bi-polar small-scale magnetic elements. The observational and theoretical aspects of the polar magnetic field reversals are discussed.


1958 ◽  
Vol 6 ◽  
pp. 345-354
Author(s):  
D. Venkatesan

The Chree method of analysis has been adopted for the analysis of the Ionization Chamber data for Huancayo, Cheltenham and Godhavn for 1946 and for the former two stations for 1945. The same procedure is adopted for the planetary index Kp also.The cosmic ray minimum (or maximum) precedes the minimum (or maximum) of Kp by about 4–5 days. It is also observed that the relative decrease in cosmic ray intensity per day, – ΔI/(I. Δt), follows the changes in Kp in a general way, and hence the electric field as would be expected from the consideration of the theory of emission of beams of particles from the sun with the associated frozen magnetic field and the electric field arising due to polarization.


2000 ◽  
Vol 21 (3-4) ◽  
pp. 193-196 ◽  
Author(s):  
V. I. Makarov ◽  
A. G. Tlatov

Sign in / Sign up

Export Citation Format

Share Document