Identifying coseismic subsidence in tidal-wetland stratigraphic sequences at the Cascadia subduction zone of western North America

1996 ◽  
Vol 101 (B3) ◽  
pp. 6115-6135 ◽  
Author(s):  
Alan R. Nelson ◽  
Ian Shennan ◽  
Antony J. Long
1995 ◽  
Vol 11 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Brian F. Atwater ◽  
Alan R. Nelson ◽  
John J. Clague ◽  
Gary A. Carver ◽  
David K. Yamaguchi ◽  
...  

Earthquakes in the past few thousand years have left signs of land-level change, tsunamis, and shaking along the Pacific coast at the Cascadia subduction zone. Sudden lowering of land accounts for many of the buried marsh and forest soils at estuaries between southern British Columbia and northern California. Sand layers on some of these soils imply that tsunamis were triggered by some of the events that lowered the land. Liquefaction features show that inland shaking accompanied sudden coastal subsidence at the Washington-Oregon border about 300 years ago. The combined evidence for subsidence, tsunamis, and shaking shows that earthquakes of magnitude 8 or larger have occurred on the boundary between the overriding North America plate and the downgoing Juan de Fuca and Gorda plates. Intervals between the earthquakes are poorly known because of uncertainties about the number and ages of the earthquakes. Current estimates for individual intervals at specific coastal sites range from a few centuries to about one thousand years.


1992 ◽  
Vol 38 (1) ◽  
pp. 74-90 ◽  
Author(s):  
Alan R. Nelson

AbstractPeaty, tidal-marsh soils interbedded with estuarine mud in late Holocene stratigraphic sequences near Coos Bay, Oregon, may have been submerged and buried during great (M > 8) subduction earthquakes, smaller localized earthquakes, or by nontectonic processes. Radiocarbon dating might help distinguish among these alternatives by showing that soils at different sites were submerged at different times along this part of the Cascadia subduction zone. But comparison of conventional 14C ages for different materials from the same buried soils shows that they contain materials that differ in age by many hundreds of years. Errors in calibrated soil ages represent about the same length of time as recurrence times for submergence events (150–500 yr)—this similarity precludes using conventional 14C ages to distinguish buried soils along the southern Oregon coast. Accelerator mass spectrometer 14C ages of carefully selected macrofossils from the tops of peaty soils should provide more precise estimates of the times of submergence events.


2006 ◽  
Vol 65 (3) ◽  
pp. 354-365 ◽  
Author(s):  
Alan R. Nelson ◽  
Harvey M. Kelsey ◽  
Robert C. Witter

AbstractComparison of histories of great earthquakes and accompanying tsunamis at eight coastal sites suggests plate-boundary ruptures of varying length, implying great earthquakes of variable magnitude at the Cascadia subduction zone. Inference of rupture length relies on degree of overlap on radiocarbon age ranges for earthquakes and tsunamis, and relative amounts of coseismic subsidence and heights of tsunamis. Written records of a tsunami in Japan provide the most conclusive evidence for rupture of much of the plate boundary during the earthquake of 26 January 1700. Cascadia stratigraphic evidence dating from about 1600 cal yr B.P., similar to that for the 1700 earthquake, implies a similarly long rupture with substantial subsidence and a high tsunami. Correlations are consistent with other long ruptures about 1350 cal yr B.P., 2500 cal yr B.P., 3400 cal yr B.P., 3800 cal yr B.P., 4400 cal yr B.P., and 4900 cal yr B.P. A rupture about 700–1100 cal yr B.P. was limited to the northern and central parts of the subduction zone, and a northern rupture about 2900 cal yr B.P. may have been similarly limited. Times of probable short ruptures in southern Cascadia include about 1100 cal yr B.P., 1700 cal yr B.P., 3200 cal yr B.P., 4200 cal yr B.P., 4600 cal yr B.P., and 4700 cal yr B.P. Rupture patterns suggest that the plate boundary in northern Cascadia usually breaks in long ruptures during the greatest earthquakes. Ruptures in southernmost Cascadia vary in length and recurrence intervals more than ruptures in northern Cascadia.


Sign in / Sign up

Export Citation Format

Share Document