An unusual pattern of recurring seismic quiescence at Kalapana, Hawaii

1996 ◽  
Vol 23 (5) ◽  
pp. 447-450 ◽  
Author(s):  
James H. Dieterich ◽  
Paul G. Okubo
Author(s):  
André Moreira ◽  
Josefina Rodrigues ◽  
Luís Delgado ◽  
António Morais ◽  
Maria Palmares ◽  
...  
Keyword(s):  

2021 ◽  
pp. e00200
Author(s):  
J.M. Gastélum-Cano ◽  
J. Fragoso-Flores ◽  
V.M. Noffal-Nuño ◽  
M. Deffis-Court

1991 ◽  
Vol 3 (2) ◽  
pp. 213-225 ◽  
Author(s):  
John Platt

We have created a network that allocates a new computational unit whenever an unusual pattern is presented to the network. This network forms compact representations, yet learns easily and rapidly. The network can be used at any time in the learning process and the learning patterns do not have to be repeated. The units in this network respond to only a local region of the space of input values. The network learns by allocating new units and adjusting the parameters of existing units. If the network performs poorly on a presented pattern, then a new unit is allocated that corrects the response to the presented pattern. If the network performs well on a presented pattern, then the network parameters are updated using standard LMS gradient descent. We have obtained good results with our resource-allocating network (RAN). For predicting the Mackey-Glass chaotic time series, RAN learns much faster than do those using backpropagation networks and uses a comparable number of synapses.


1995 ◽  
Vol 4 (4) ◽  
pp. 751-754 ◽  
Author(s):  
Chunfang Zhang ◽  
Alessandra Baumer ◽  
Ian R. Mackay ◽  
Anthony W. Linnane ◽  
Phillip Nagley

2017 ◽  
Vol 29 (2) ◽  
pp. 115-118 ◽  
Author(s):  
Soumyajit Roy ◽  
Ajeet Kumar Gandhi ◽  
Bharti Devnani ◽  
Lavleen Singh ◽  
Bidhu Kalyan Mohanti

1983 ◽  
Vol 73 (1) ◽  
pp. 219-236
Author(s):  
M. Wyss ◽  
R. E. Habermann ◽  
Ch. Heiniger

abstract The rate of occurrence of earthquakes shallower than 100 km during the years 1963 to 1980 was studied as a function of time and space along the New Hebrides island arc. Systematic examination of the seismicity rates for different magnitude bands showed that events with mb < 4.8 were not reported consistently over time. The seismicity rate as defined by mb ≧ 4.8 events was examined quantitatively and systematically in the source volumes of three recent main shocks and within two seismic gaps. A clear case of seismic quiescence could be shown to have existed before one of the large main shocks if a major asperity was excluded from the volume studied. The 1980 Ms = 8 rupture in the northern New Hebrides was preceded by a pattern of 9 to 12 yr of quiescence followed by 5 yr of normal rate. This pattern does not conform to the hypothesis that quiescence lasts up to the mainshock which it precedes. The 1980 rupture also did not fully conform to the gap hypothesis: half of its aftershock area covered part of a great rupture which occurred in 1966. A major asperity seemed to play a critical role in the 1966 and 1980 great ruptures: it stopped the 1966 rupture, and both parts of the 1980 double rupture initiated from it. In addition, this major asperity made itself known by a seismicity rate and stress drops higher than in the surrounding areas. Stress drops of 272 earthquakes were estimated by the MS/mb method. Time dependence of stress drops could not be studied because of changes in the world data set of Ms and mb values. Areas of high stress drops did not correlate in general with areas of high seismicity rate. Instead, outstandingly high average stress drops were observed in two plate boundary segments with average seismicity rate where ocean floor ridges are being subducted. The seismic gaps of the central and northern New Hebrides each contain seismically quiet regions. In the central New Hebrides, the 50 to 100 km of the plate boundary near 18.5°S showed an extremely low seismicity rate during the entire observation period. Low seismicity could be a permanent property of this location. In the northern New Hebrides gap, seismic quiescence started in mid-1972, except in a central volume where high stress drops are observed. This volume is interpreted as an asperity, and the quiescence may be interpreted as part of the preparation process to a future large main shock near 13.5°S.


Sign in / Sign up

Export Citation Format

Share Document