scholarly journals Observations of ultrafine aerosol particle formation and growth in boreal forest

1997 ◽  
Vol 24 (10) ◽  
pp. 1219-1222 ◽  
Author(s):  
J. M. Mäkelä ◽  
P. Aalto ◽  
V. Jokinen ◽  
T. Pohja ◽  
A. Nissinen ◽  
...  
Tellus B ◽  
2008 ◽  
Vol 60 (4) ◽  
Author(s):  
Miikka Dal Maso ◽  
Antti Hyvärinen ◽  
Mika Komppula ◽  
Peter Tunved ◽  
Veli-Matti Kerminen ◽  
...  

2007 ◽  
Vol 7 (1) ◽  
pp. 201-210 ◽  
Author(s):  
A. Hirsikko ◽  
T. Bergman ◽  
L. Laakso ◽  
M. Dal Maso ◽  
I. Riipinen ◽  
...  

Abstract. We have measured the size distributions of air ions (0.42–7.5 nm in diameter) with the Balanced Scanning Mobility Analyzer in boreal forest, in Southern Finland since spring 2003. The size range covers the size range of cluster ions (approximately 0.42–1.6 nm) and naturally charged nanometre aerosol particles (1.6–7.5 nm) or intermediate air ions. Based on the measurements from April 2003 to March 2006 we studied the characteristics of charged aerosol particle formation by classifying each day either as a particle formation event, undefined or non-event day. The principal of the classification, as well as the statistical description of the charged aerosol particle formation events are given. We found in total 270 (26% of the analysed days) and 226 (22% of the analysed days) particle formation days for negative and positive intermediate ions, respectively. For negatively charged particles we classified 411 (40% of the analysed days) undefined and 348 (34% of the analysed days) non-event days whereas for positively charged particles 343 (33% of the analysed days) undefined and 460 (45% of the analysed days) non-event days. The results were compared with the ordinary classification based on the Differential Mobility Particle Sizer (DMPS) measurements carried out at the same place. The above-presented values differed slightly from that found from the DMPS data, with a lower particle diameter of 3 nm. In addition, we have found the rain-induced intermediate ion bursts frequently. The rain effect was detected on 163 days by means of negative ions and on 105 days by positive ones. Another interesting phenomenon among the charged aerosol particles was the appearance and existence of intermediate ions during the snowfall. We observed this phenomenon 24 times with negatively charged particles and 21 times with positively charged ones during winter months (October–April). These intermediate air ions were seen during the snowfall and may be caused by ice crystals, although the origin of these intermediate ions is unclear at the moment.


2019 ◽  
Vol 124 (8) ◽  
pp. 4800-4811 ◽  
Author(s):  
Christopher M. Stangl ◽  
Justin M. Krasnomowitz ◽  
Michael J. Apsokardu ◽  
Lee Tiszenkel ◽  
Qi Ouyang ◽  
...  

2009 ◽  
Vol 9 (12) ◽  
pp. 4077-4089 ◽  
Author(s):  
H. E. Manninen ◽  
T. Nieminen ◽  
I. Riipinen ◽  
T. Yli-Juuti ◽  
S. Gagné ◽  
...  

Abstract. Despite the fact that frequent aerosol formation has been observed in various locations in the atmosphere, the overall magnitude of the new particle formation as a particle source is still unclear. In order to understand the particle formation and growth processes, we investigate the magnitudes of the particle formation and growth rates at the size where the real atmospheric nucleation and activation occurs. The relative contribution of neutral and charged particles to the new particle formation rate is also studied. The data include particle and ion number size distributions and total particle concentration measurements at a boreal forest site in Hyytiälä, Finland, during the spring 2007 EUCAARI field campaign. The total and charged particle formation rates differed from each other by approximately an order of magnitude. The median formation rates of 2 nm total and charged particles were 0.65 cm−3 s−1 and 0.03 cm−3 s−1, respectively. The median growth rates of particles in size classes 1.3–3, 3–7 and 7–20 nm were 1.9, 3.6 and 4.2 nm h−1, respectively. The calculated ion-ion recombination rates were about the same order of magnitude as the ion-induced formation rates. The results indicate that the ion-induced nucleation involving the ion-ion recombination products, i.e. ion mediated nucleation, contributes approximately 10% to the boreal forest new particle formation events.


Tellus B ◽  
2008 ◽  
Vol 60 (4) ◽  
pp. 495-508 ◽  
Author(s):  
Miikka Dal Maso ◽  
Antti Hyvärinen ◽  
Mika Komppula ◽  
Peter Tunved ◽  
Veli-Matti Kerminen ◽  
...  

2019 ◽  
Vol 19 (9) ◽  
pp. 5835-5852 ◽  
Author(s):  
Imre Salma ◽  
Zoltán Németh

Abstract. Dynamic properties, i.e. particle formation rate J6 and particle diameter growth rate GR10, and timing properties, i.e. starting time (t1) and duration time interval (Δt) of 247 quantifiable atmospheric new aerosol particle formation (NPF) and growth events identified in the city centre and near-city background of Budapest over 6 full measurement years, together with related gas-phase H2SO4 proxy, condensation sink (CS) of vapours, basic meteorological data and concentrations of criteria pollutant gases were derived, evaluated, discussed and interpreted. In the city centre, nucleation ordinarily starts at 09:15 UTC + 1, and it is maintained for approximately 3 h. The NPF and growth events produce 4.6 aerosol particles with a diameter of 6 nm in 1 cm3 of air in 1 s and cause the particles with a diameter of 10 nm to grow at a typical rate of 7.3 nm h−1. Nucleation starts approximately 1 h earlier in the near-city background, and it shows substantially smaller J6 (with a median of 2.0 cm−3 s−1) and GR10 values (with a median of 5.0 nm h−1), while the duration of nucleation is similar to that in the centre. Monthly distributions of the dynamic properties and daily maximum H2SO4 proxy do not follow the mean monthly pattern of the event occurrence frequency. The factors that control the event occurrence and that govern the intensity of particle formation and growth are not directly linked. New particle formation and growth processes advance in a different manner in the city and its close environment. This could likely be related to diversities in atmospheric composition, chemistry and physics. Monthly distributions and relationships among the properties mentioned provided indirect evidence that chemical species other than H2SO4 largely influence the particle growth and possibly atmospheric NPF process as well. The J6, GR10 and Δt can be described by a log-normal distribution function. Most extreme dynamic properties could not be explained by available single or compound variables. Approximately 40 % of the NPF and growth events exhibited broad beginning, which can be an urban feature. For doublets, the later onset frequently shows more intensive particle formation and growth than the first onset by a typical factor of approximately 1.5. The first event is attributed to a regional type, while the second event, superimposed on the first, is often associated with subregional, thus urban NPF and growth processes.


2009 ◽  
Vol 9 (1) ◽  
pp. 5119-5151 ◽  
Author(s):  
H. E. Manninen ◽  
T. Nieminen ◽  
I. Riipinen ◽  
T. Yli-Juuti ◽  
S. Gagné ◽  
...  

Abstract. Despite the fact that frequent aerosol formation has been observed in various locations in the atmosphere, the overall magnitude of the new particle formation as a particle source is still unclear. In order to understand the particle formation and growth processes, we investigate the magnitudes of the particle formation and growth rates at the size where the real atmospheric nucleation and activation occurs. The relative contribution of neutral and charged particles to the new particle formation rate is also studied. The data include particle and ion number size distributions and total particle concentration measurements at a boreal forest site in Hyytiälä, Finland, during the spring 2007 EUCAARI field campaign. The total and charged particle formation rates differed from each other by approximately an order of magnitude. The median formation rates of 2 nm total and charged particles were 0.65 cm−3 s−1 and 0.03 cm−3 s−1, respectively. The median growth rates of particles in size classes 1.3–3, 3–7 and 7–30 nm were 1.9, 3.6 and 4.2 nm h−1, respectively. The calculated ion-ion recombination rates were about the same order of magnitude as the ion-induced formation rates. The results indicate that the ion-induced nucleation involving the ion-ion recombination products, i.e. ion mediated nucleation, contributes approximately 10% to the boreal forest new particle formation events.


Sign in / Sign up

Export Citation Format

Share Document