scholarly journals Seasonal variability of the diurnal tide: Results from the Canadian middle atmosphere general circulation model

1997 ◽  
Vol 102 (D25) ◽  
pp. 29747-29764 ◽  
Author(s):  
Charles McLandress
2002 ◽  
Vol 20 (2) ◽  
pp. 225-235 ◽  
Author(s):  
M. J. Harris ◽  
N. F. Arnold ◽  
A. D. Aylward

Abstract. A new coupled middle atmosphere and thermosphere general circulation model has been developed, and some first results are presented. An investigation into the effects of the diurnal tide upon the mean composition, dynamics and energetics was carried out for equinox conditions. Previous studies have shown that tides deplete mean atomic oxygen in the upper mesosphere-lower thermosphere due to an increased recombination in the tidal displaced air parcels. The model runs presented suggest that the mean residual circulation associated with the tidal dissipation also plays an important role. Stronger lower boundary tidal forcing was seen to increase the equatorial local diurnal maximum of atomic oxygen and the associated 0(1S) 557.7 nm green line volume emission rates. The changes in the mean background temperature structure were found to correspond to changes in the mean circulation and exothermic chemical heating.Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry) Meterology and atmospheric dynamics (middle atmosphere dynamics; waves and tides)


2016 ◽  
Vol 73 (3) ◽  
pp. 1335-1349 ◽  
Author(s):  
Simon P. Alexander ◽  
Kaoru Sato ◽  
Shingo Watanabe ◽  
Yoshio Kawatani ◽  
Damian J. Murphy

Abstract Southern Hemisphere extratropical gravity wave activity is examined using simulations from a free-running middle-atmosphere general circulation model called Kanto that contains no gravity wave parameterizations. The total absolute gravity wave momentum flux (MF) and its intermittency, diagnosed by the Gini coefficient, are examined during January and July. The MF and intermittency results calculated from the Kanto model agree well with results from satellite limb and superpressure balloon observations. The analysis of the Kanto model simulations indicates the following results. Nonorographic gravity waves are generated in Kanto in the frontal regions of extratropical depressions and around tropopause-level jets. Regions with lower (higher) intermittency in the July midstratosphere become more (less) intermittent by the mesosphere as a result of lower-level wave removal. The gravity wave intermittency is low and nearly homogeneous throughout the SH middle atmosphere during January. This indicates that nonorographic waves dominate at this time of year, with sources including continental convection as well as oceanic depressions. Most of the zonal-mean MF at 40°–65°S in January and July is due to gravity waves located above the oceans. The zonal-mean MF at lower latitudes in both months has a larger contribution from the land regions but the fraction above the oceans remains larger.


Author(s):  
Shingo Watanabe ◽  
Yoshio Kawatani ◽  
Yoshihiro Tomikawa ◽  
Kazuyuki Miyazaki ◽  
Masaaki Takahashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document