Increases in middle atmospheric water vapor as observed by the Halogen Occultation Experiment and the ground-based Water Vapor Millimeter-Wave Spectrometer from 1991 to 1997

1998 ◽  
Vol 103 (D3) ◽  
pp. 3531-3543 ◽  
Author(s):  
Gerald E. Nedoluha ◽  
Richard M. Bevilacqua ◽  
R. Michael Gomez ◽  
David E. Siskind ◽  
Brian C. Hicks ◽  
...  
2002 ◽  
Vol 40 (6) ◽  
pp. 1211-1219 ◽  
Author(s):  
J.R. Wang ◽  
P. Racette ◽  
M.E. Triesky ◽  
E.V. Browell ◽  
S. Ismail ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 2402
Author(s):  
Weifu Sun ◽  
Jin Wang ◽  
Yuheng Li ◽  
Junmin Meng ◽  
Yujia Zhao ◽  
...  

Based on the optimal interpolation (OI) algorithm, a daily fusion product of high-resolution global ocean columnar atmospheric water vapor with a resolution of 0.25° was generated in this study from multisource remote sensing observations. The product covers the period from 2003 to 2018, and the data represent a fusion of microwave radiometer observations, including those from the Special Sensor Microwave Imager Sounder (SSMIS), WindSat, Advanced Microwave Scanning Radiometer for Earth Observing System sensor (AMSR-E), Advanced Microwave Scanning Radiometer 2 (AMSR2), and HY-2A microwave radiometer (MR). The accuracy of this water vapor fusion product was validated using radiosonde water vapor observations. The comparative results show that the overall mean deviation (Bias) is smaller than 0.6 mm; the root mean square error (RMSE) and standard deviation (SD) are better than 3 mm, and the mean absolute deviation (MAD) and correlation coefficient (R) are better than 2 mm and 0.98, respectively.


Sign in / Sign up

Export Citation Format

Share Document