Retrieval of atmospheric water vapor and land surface temperature from AVHRR thermal imagery

Author(s):  
Shunlin Liang ◽  
S. Goward ◽  
J. Ranson ◽  
R. Dubayah ◽  
S. Kalluri
Sensors ◽  
2008 ◽  
Vol 8 (3) ◽  
pp. 1832-1845 ◽  
Author(s):  
Tangtang Zhang ◽  
Jun Wen ◽  
Rogier Van der Velde ◽  
Xianhong Meng ◽  
Zhenchao Li ◽  
...  

2021 ◽  
Vol 13 (24) ◽  
pp. 5072
Author(s):  
Wenhui Du ◽  
Zhihao Qin ◽  
Jinlong Fan ◽  
Chunliang Zhao ◽  
Qiuyan Huang ◽  
...  

Land surface temperature (LST) is an essential parameter widely used in environmental studies. The Medium Resolution Spectral Imager II (MERSI-II) boarded on the second generation Chinese polar-orbiting meteorological satellite, Fengyun-3D (FY-3D), provides a new opportunity for LST retrieval at a spatial resolution of 250 m that is higher than that of the already widely used Moderate Resolution Imaging Spectrometer (MODIS) LST data of 1000 m. However, there is no operational LST product from FY-3D MERSI-II data available for free access. Therefore, in this study, we developed an improved two-factor split-window algorithm (TFSWA) of LST retrieval from this data source as it has two thermal-infrared (TIR) bands. The essential coefficients of the TFSWA algorithm have been carefully and precisely estimated for the FY-3D MERSI-II TIR thermal bands. A new approach for estimating land surface emissivity has been developed using the ASTER Global Emissivity Database (ASTER GED) and the International Geosphere-Biosphere Program (IGBP) data. A model to estimate the atmospheric water vapor content (AWVC) from the three atmospheric water vapor absorption bands (bands 16, 17, and 18) has been developed as AWVC has been recognized as the most important factor determining the variation of AT. Using MODTRAN 5.2, the equations for the AT estimate from the retrieved AWVC were established. In addition, the AT of the pixels at the far edge of FY-3D MERSI-II data may be strongly affected by the increase of the optical path. Viewing zenith angle (VZA) correction equations were proposed in the study to correct this effect on AT estimation. Field data from four stations were applied to validate the improved TFSWA in the study. Cross-validation with MODIS LST (MYD11) was also conducted to evaluate the improved TFSWA. The cross-validation result indicates that the FY-3D MERSI-II LST from the improved TFSWA are comparable with MODIS LST while the correlation coefficients between FY-3D MERSI-II LST and MODIS LST over the Mid-East China region are in the range of 0.84~0.98 for different seasons and land cover types. Validation with 318 field LST samples indicates that the average MAE and R2 of the scenes at the four stations are about 1.97 K and 0.98, respectively. Thus, it could be concluded that the improved TFSWA developed in the study can be a good algorithm for LST retrieval from FY-3D MERSI-II data with acceptable accuracy.


1994 ◽  
Vol 99 (C3) ◽  
pp. 5219 ◽  
Author(s):  
William J. Emery ◽  
Yunyue Yu ◽  
Gary A. Wick ◽  
Peter Schluessel ◽  
Richard W. Reynolds

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Fabao Liu ◽  
Xingli Jia ◽  
Wenbin Li ◽  
Ao Du ◽  
Dang Wang

To balance sustainable road construction and environmental impact, intrinsic relationships between regional road networks and land surface temperature (LST) along the roads must be examined. In this study, we hypothesize that expanding road networks can affect the LST within a given region. Thus, we determined the influence of varying road grades on the surrounding LST. Using an improved single-window algorithm with reasonably adjusted water vapor parameters, LST data for the relevant areas were extracted from Landsat 8 data. Analyzing these data revealed that, in the improved single-window algorithm, the MOD05 L2 water vapor parameter could obtain results, indicating that road grades are positively correlated with LST changes when road network mileage is increased. In addition, we found that LST was increased by highways and low-grade roads over distances of 180 m and 150 m compared with the surrounding area, respectively. Furthermore, LST was affected by road interchanges over a distance of 300 m and by intersections formed by low-grade roads over 150 m; both have a linear nonuniform influence on the propagation models. Finally, we determined that different highways in the LST radiation range can interact to form an LST concentration zone, resulting in further LST increases.


2020 ◽  
Vol 20 (3) ◽  
pp. 1723-1736 ◽  
Author(s):  
Tobias Marke ◽  
Ulrich Löhnert ◽  
Vera Schemann ◽  
Jan H. Schween ◽  
Susanne Crewell

Abstract. Finding observational evidence of land surface and atmosphere interactions is crucial for understanding the spatial and temporal evolution of the boundary layer, as well as for model evaluation, and in particular for large-eddy simulation (LES) models. In this study, the influence of a heterogeneous land surface on the spatial distribution of atmospheric water vapor is assessed. Ground-based remote sensing measurements from a scanning microwave radiometer (MWR) are used in a long-term study over 6 years to characterize spatial heterogeneities in integrated water vapor (IWV) during clear-sky conditions at the Jülich ObservatorY for Cloud Evolution (JOYCE). The resulting deviations from the mean of the scans reveal a season- and direction-dependent IWV that is visible throughout the day. Comparisons with a satellite-derived spatial IWV distribution show good agreement for a selection of satellite overpasses during convective situations but no clear seasonal signal. With the help of a land use type classification and information on the topography, the main types of regions with a positive IWV deviation were determined to be agricultural fields and nearby open pit mines. Negative deviations occurred mainly above elevated forests and urban areas. In addition, high-resolution large-eddy simulations (LESs) are used to investigate changes in the water vapor and cloud fields for an altered land use input.


Sign in / Sign up

Export Citation Format

Share Document