scholarly journals Stormtime ring current and radiation belt ion transport: Simulations and interpretations

Author(s):  
Margaret W. Chen ◽  
Michael Schulz ◽  
Larry R. Lyons ◽  
David J. Gorney
2021 ◽  
Author(s):  
Qiugang Zong

Abstract. Solar wind forcing, e.g. interplanetary shock and/or solar wind dynamic pressure pulses impact on the Earth’s magnetosphere manifests many fundamental important space physics phenomena including producing electromagnetic waves, plasma heating and energetic particle acceleration. This paper summarizes our present understanding of the magnetospheric response to solar wind forcing in the aspects of radiation belt electrons, ring current ions and plasmaspheric plasma physics based on in situ spacecraft measurements, ground-based magnetometer data, MHD and kinetic simulations. Magnetosphere response to solar wind forcing, is not just a “one-kick” scenario. It is found that after the impact of solar wind forcing on the Earth’s magnetosphere, plasma heating and energetic particle acceleration started nearly immediately and could last for a few hours. Even a small dynamic pressure change of interplanetary shock or solar wind pressure pulse can play a non-negligible role in magnetospheric physics. The impact leads to generate series kind of waves including poloidal mode ultra-low frequency (ULF) waves. The fast acceleration of energetic electrons in the radiation belt and energetic ions in the ring current region response to the impact usually contains two contributing steps: (1) the initial adiabatic acceleration due to the magnetospheric compression; (2) followed by the wave-particle resonant acceleration dominated by global or localized poloidal ULF waves excited at various L-shells. Generalized theory of drift and drift-bounce resonance with growth or decay localized ULF waves has been developed to explain in situ spacecraft observations. The wave related observational features like distorted energy spectrum, boomerang and fishbone pitch angle distributions of radiation belt electrons, ring current ions and plasmaspheric plasma can be explained in the frame work of this generalized theory. It is worthy to point out here that poloidal ULF waves are much more efficient to accelerate and modulate electrons (fundamental mode) in the radiation belt and charged ions (second harmonic) in the ring current region. The results presented in this paper can be widely used in solar wind interacting with other planets such as Mercury, Jupiter, Saturn, Uranus and Neptune, and other astrophysical objects with magnetic fields.


2013 ◽  
Vol 118 (7) ◽  
pp. 4391-4399 ◽  
Author(s):  
Zhigang Yuan ◽  
Ming Li ◽  
Ying Xiong ◽  
Haimeng Li ◽  
Meng Zhou ◽  
...  

2021 ◽  
Vol 44 ◽  
pp. 7-11
Author(s):  
Elena Antonova ◽  

We analyzed the problems of formation of the outer radiation belt (ORB) taking into consideration the latest changes in our understanding of the high-latitude magnetospheric topology. This includes strong evidence that the auroral oval maps to the outer part of the ring current, meanwhile the ORB polar boundary maps inside the auroral oval. Our analysis also includes the variation of the plasma pressure distribution and the time of the acceleration of relativistic electrons during geomagnetic storm. It is shown that the maximum of ORB is formed after the geomagnetic storm in the region of plasma pressure maximum. The position of this maximum agrees with the prediction of the ORB formation theory based on the analysis of ring current development during storm. We emphasize the role of adiabatic processes in the ORB dynamics and the importance of the substorm injections during storm recovery phase for the formation of enhanced fluxes of ORB electrons after the storm.


1993 ◽  
Vol 98 (A3) ◽  
pp. 3835-3849 ◽  
Author(s):  
Margaret W. Chen ◽  
Michael Schulz ◽  
Larry R. Lyons ◽  
David J. Gorney
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document