Ion transport and loss in the Earth's quiet ring current: 1. Data and standard model

1993 ◽  
Vol 98 (A8) ◽  
pp. 13491-13508 ◽  
Author(s):  
R. B. Sheldon ◽  
D. C. Hamilton
Author(s):  
K. A. Sorathia ◽  
A. Michael ◽  
V.G. Merkin ◽  
A.Y. Ukhorskiy ◽  
D. L. Turner ◽  
...  

During geomagnetically active periods ions are transported from the magnetotail into the inner magnetosphere and accelerated to energies of tens to hundreds of keV. These energetic ions, of mixed composition with the most important species being H+ and O+, become the dominant source of plasma pressure in the inner magnetosphere. Ion transport and acceleration can occur at different spatial and temporal scales ranging from global quasi-steady convection to localized impulsive injection events and may depend on the ion gyroradius. In this study we ascertain the relative importance of mesoscale flow structures and the effects of ion non-adiabaticity on the produced ring current. For this we use: global magnetohydrodynamic (MHD) simulations to generate self-consistent electromagnetic fields under typical driving conditions which exhibit bursty bulk flows (BBFs); and injected test particles, initialized to match the plasma moments of the MHD simulation, and subsequently evolved according to the kinetic equations of motion. We show that the BBFs produced by our simulation reproduce thermodynamic and magnetic statistics from in situ measurements and are numerically robust. Mining the simulation data we create a data set, over a billion points, connecting particle transport to characteristics of the MHD flow. From this we show that mesoscale bubbles, localized depleted entropy regions, and particle gradient drifts are critical for ion transport. Finally we show, using identical particle ensembles with varying mass, that O+ non-adiabaticity creates qualitative differences in energization and spatial distribution while H+ non-adiabaticity has non-negligible implications for loss timescales.


Author(s):  
Sterling P. Newberry

At the 1958 meeting of our society, then known as EMSA, the author introduced the concept of microspace and suggested its use to provide adequate information storage space and the use of electron microscope techniques to provide storage and retrieval access. At this current meeting of MSA, he wishes to suggest an additional use of the power of the electron microscope.The author has been contemplating this new use for some time and would have suggested it in the EMSA fiftieth year commemorative volume, but for page limitations. There is compelling reason to put forth this suggestion today because problems have arisen in the “Standard Model” of particle physics and funds are being greatly reduced just as we need higher energy machines to resolve these problems. Therefore, any techniques which complement or augment what we can accomplish during this austerity period with the machines at hand is worth exploring.


2001 ◽  
Vol 120 (5) ◽  
pp. A532-A532
Author(s):  
R LARSEN ◽  
M HANSEN ◽  
N BINSLEV ◽  
A MERTZNIELSEN
Keyword(s):  

1997 ◽  
Vol 92 (3) ◽  
pp. 609-617 ◽  
Author(s):  
RICCARDO ZANASI ◽  
PAOLO LAZZERETTI

Sign in / Sign up

Export Citation Format

Share Document