scholarly journals Magnetospheric Response to Solar Wind Forcing: ULF Wave – Particle Interaction Perspective

2021 ◽  
Author(s):  
Qiugang Zong

Abstract. Solar wind forcing, e.g. interplanetary shock and/or solar wind dynamic pressure pulses impact on the Earth’s magnetosphere manifests many fundamental important space physics phenomena including producing electromagnetic waves, plasma heating and energetic particle acceleration. This paper summarizes our present understanding of the magnetospheric response to solar wind forcing in the aspects of radiation belt electrons, ring current ions and plasmaspheric plasma physics based on in situ spacecraft measurements, ground-based magnetometer data, MHD and kinetic simulations. Magnetosphere response to solar wind forcing, is not just a “one-kick” scenario. It is found that after the impact of solar wind forcing on the Earth’s magnetosphere, plasma heating and energetic particle acceleration started nearly immediately and could last for a few hours. Even a small dynamic pressure change of interplanetary shock or solar wind pressure pulse can play a non-negligible role in magnetospheric physics. The impact leads to generate series kind of waves including poloidal mode ultra-low frequency (ULF) waves. The fast acceleration of energetic electrons in the radiation belt and energetic ions in the ring current region response to the impact usually contains two contributing steps: (1) the initial adiabatic acceleration due to the magnetospheric compression; (2) followed by the wave-particle resonant acceleration dominated by global or localized poloidal ULF waves excited at various L-shells. Generalized theory of drift and drift-bounce resonance with growth or decay localized ULF waves has been developed to explain in situ spacecraft observations. The wave related observational features like distorted energy spectrum, boomerang and fishbone pitch angle distributions of radiation belt electrons, ring current ions and plasmaspheric plasma can be explained in the frame work of this generalized theory. It is worthy to point out here that poloidal ULF waves are much more efficient to accelerate and modulate electrons (fundamental mode) in the radiation belt and charged ions (second harmonic) in the ring current region. The results presented in this paper can be widely used in solar wind interacting with other planets such as Mercury, Jupiter, Saturn, Uranus and Neptune, and other astrophysical objects with magnetic fields.

2021 ◽  
Author(s):  
Qiugang Zong

<p>Solar wind forcing, e.g. interplanetary shock and/or solar wind dynamic pressure pulses impact on the Earth’s magnetosphere manifests many fundamental important space physics phenomena including producing electromagnetic waves, plasma heating and energetic particle acceleration. This paper summarizes our present understanding of the magnetospheric response to solar wind forcing in the aspects of radiation belt electrons, ring current ions and plasmaspheric plasma physic based on in situ spacecraft measurements, ground-based magnetometer data, MHD and kinetic simulations.</p><p>Magnetosphere response to solar wind forcing, is not just “one-kick” scenario. It is found that after the impact of solar wind forcing on the Earth’s magnetosphere, plasma heating and energetic particle acceleration started nearly immediately and could last for a few hours. Even a small dynamic pressure change of interplanetary shock or solar wind pressure pulse can play a non-negligible role in magnetospheric physics. The impact leads to generate series kind of waves including poloidal mode ultra-low frequency (ULF) waves. The fast acceleration of energetic electrons in the radiation belt and energetic ions in the ring current region response to the impact usually contain two contributing steps: (1) the initial adiabatic acceleration due to the magnetospheric compression; (2) followed by the wave-particle resonant acceleration dominated by global or localized poloidal ULF waves excited at various L-shells.</p><p>Generalized theory of drift and drift-bounce resonance with growth or decay localized ULF waves have been developed to explain in situ spacecraft observations. The wave related observational features like distorted energy spectrum, boomerang and fishbone pitch angle distributions of radiation belt electrons, ring current ions and plasmaspheric plasma can be explained in the frame work of this generalized theory. It is worthy to point out here that poloidal ULF wave is much more efficient to accelerate and modulate electrons (fundamental mode) in the radiation belt and charged ions (second harmonic) in the ring current region. The results presented in this paper can be widely used in solar wind interacting with other planets such as Mercury, Jupiter, Saturn, Uranus and Neptune, and other astrophysical objects with magnetic fields.</p>


2020 ◽  
Author(s):  
Qiugang Zong

<p>Sudden changes in solar wind forcing, e.g., those associated with interplanetary shocks and/or solar wind dynamic pressure pulses, can cause many fundamentally important phenomena in the Earth’s magnetosphere including electromagnetic wave generation, plasma heating and energetic particle acceleration. This presentation summarizes our present understanding of the magnetospheric response to solar wind forcing in the aspects of radiation belt electrons, ring current ions and plasmaspheric plasma based on<em> in situ</em> spacecraft measurements, ground-based magnetometer data, MHD and kinetic simulations. </p><p>Magnetosphere response to sudden changes in solar wind forcing, is not a “one-kick” scenario. It is found that after the impact of solar wind structures on the Earth’s magnetosphere, plasma heating and energetic particle acceleration started nearly immediately and could last for a few hours. Even a small dynamic pressure change associated with an interplanetary shock or a solar wind pressure pulse can play a non-negligible role in magnetospheric physics. The impact leads to different kinds of waves including poloidal mode ULF waves. The fast acceleration of energetic electrons in the radiation belt and energetic ions in the ring current region usually contains two steps: (1) the initial adiabatic acceleration due to the magnetospheric compression; (2) followed by the wave-particle resonant acceleration dominated by global or localized poloidal ULF waves excited at various L-shells. </p><p>Generalized theory of drift and drift-bounce resonance with growing or decaying ULF waves  (globally distributed or localized)  has been developed to explain <em>in situ</em> spacecraft observations. The new wave-related observational features like distorted energy spectrum, boomerang and fishbone pitch angle distributions of radiation belt electrons, ring current ions and plasmaspheric plasma can be explained in the frame work of this generalized theory. The results showed in this presentation can be widely used in the interaction of the solar wind with other planets such as Mercury, Jupiter, Saturn, Uranus and Neptune, and other astrophysical objects with magnetic fields.</p>


2016 ◽  
Vol 34 (5) ◽  
pp. 493-509 ◽  
Author(s):  
Zheng Xiang ◽  
Binbin Ni ◽  
Chen Zhou ◽  
Zhengyang Zou ◽  
Xudong Gu ◽  
...  

<p><strong>Abstract.</strong> Radiation belt electron flux dropouts are a kind of drastic variation in the Earth's magnetosphere, understanding of which is of both scientific and societal importance. Using electron flux data from a group of 14 satellites, we report multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an event of intense solar wind dynamic pressure pulse. When the pulse occurred, magnetopause and atmospheric loss could take effect concurrently contributing to the electron flux dropout. Losses through the magnetopause were observed to be efficient and significant at <i>L</i> ≳ 5, owing to the magnetopause intrusion into <i>L</i> ∼ 6 and outward radial diffusion associated with sharp negative gradient in electron phase space density. Losses to the atmosphere were directly identified from the precipitating electron flux observations, for which pitch angle scattering by plasma waves could be mainly responsible. While the convection and substorm injections strongly enhanced the energetic electron fluxes up to hundreds of keV, they could delay other than avoid the occurrence of electron flux dropout at these energies. It is demonstrated that the pulse-time radiation belt electron flux dropout depends strongly on the specific interplanetary and magnetospheric conditions and that losses through the magnetopause and to the atmosphere and enhancements of substorm injection play an essential role in combination, which should be incorporated as a whole into future simulations for comprehending the nature of radiation belt electron flux dropouts.</p>


2021 ◽  
Author(s):  
Michael Madelaire ◽  
Karl Laundal ◽  
Jone Reistad ◽  
Spencer Hatch ◽  
Anders Ohma ◽  
...  

&lt;p&gt;The geospace response to rapid changes in solar wind pressure results in a perturbation of the magnetospheric-ionospheric system. Ground magnetometer stations located at polar latitudes have long been known to measure a sudden impulse only minutes after a solar wind structure reaches the magnetopause.&lt;br&gt;Here a list of events associated with a step-like feature in the solar wind dynamic pressure between 1994 and 2020 is compiled based on in situ observations from ACE and Wind. Arrival time estimates are calculated using a simple propagation method and validated with a correlation analysis using SYM-H from low/mid latitude stations. A superposed epoch analysis is carried out to investigate the impact of season, interplanetary magnetic field orientation and other attributes pertaining to the interplanetary shock. All available ground magnetometer stations in SuperMAG, during each event, are used allowing for global coverage.&amp;#160;&lt;br&gt;Global data coverage is important for this kind of comparative analysis as it is needed to determine changes in the systems response due to e.g. season, which might lead to an improved understanding of the magnetospheric-ionospheric-thermospheric coupling.&lt;/p&gt;


2021 ◽  
Author(s):  
Sarah Bentley ◽  
Rhys Thompson ◽  
Clare Watt ◽  
Jennifer Stout ◽  
Teo Bloch

&lt;p&gt;We present and analyse a freely-available model of the power found in ultra-low frequency waves (ULF, 1-15 mHz) throughout Earth&amp;#8217;s magnetosphere. Predictions can be used to test our understanding of magnetospheric dynamics, while accurate models of these waves are required to characterise the energisation and transport of radiation belt electrons in space weather.&lt;/p&gt;&lt;p&gt;This model is constructed using decision tree ensembles, which iteratively partition the given parameter space into variable size bins. Wave power is determined by physical driving parameters (e.g. solar wind properties) and spatial parameters of interest (magnetic local time MLT, magnetic latitude and frequency). As a parameterised model, there is no guarantee that individual physical processes can be extracted and analysed. However, by iteratively considering smaller scale driving processes, we identify predominant wave drivers and find that solar wind driving of ULF waves are moderated by internal magnetospheric conditions. Significant remaining uncertainty occurs with mild solar wind driving, suggesting that the internal state of the magnetosphere should be included in future.&lt;/p&gt;&lt;p&gt;Models such as this may be used to create global magnetospheric &amp;#8220;maps&amp;#8221; of predicted wave power which may then be used to create radial diffusion coefficients determining the effect of ULF waves on radiation belt electrons.&lt;/p&gt;


2005 ◽  
Vol 23 (2) ◽  
pp. 609-624 ◽  
Author(s):  
K. E. J. Huttunen ◽  
J. Slavin ◽  
M. Collier ◽  
H. E. J. Koskinen ◽  
A. Szabo ◽  
...  

Abstract. Sudden impulses (SI) in the tail lobe magnetic field associated with solar wind pressure enhancements are investigated using measurements from Cluster. The magnetic field components during the SIs change in a manner consistent with the assumption that an antisunward moving lateral pressure enhancement compresses the magnetotail axisymmetrically. We found that the maximum variance SI unit vectors were nearly aligned with the associated interplanetary shock normals. For two of the tail lobe SI events during which Cluster was located close to the tail boundary, Cluster observed the inward moving magnetopause. During both events, the spacecraft location changed from the lobe to the magnetospheric boundary layer. During the event on 6 November 2001 the magnetopause was compressed past Cluster. We applied the 2-D Cartesian model developed by collier98 in which a vacuum uniform tail lobe magnetic field is compressed by a step-like pressure increase. The model underestimates the compression of the magnetic field, but it fits the magnetic field maximum variance component well. For events for which we could determine the shock normal orientation, the differences between the observed and calculated shock propagation times from the location of WIND/Geotail to the location of Cluster were small. The propagation speeds of the SIs between the Cluster spacecraft were comparable to the solar wind speed. Our results suggest that the observed tail lobe SIs are due to lateral increases in solar wind dynamic pressure outside the magnetotail boundary.


2013 ◽  
Vol 118 (7) ◽  
pp. 4391-4399 ◽  
Author(s):  
Zhigang Yuan ◽  
Ming Li ◽  
Ying Xiong ◽  
Haimeng Li ◽  
Meng Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document