plasma pressure
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 62)

H-INDEX

27
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Jonathan E Menard ◽  
Brian A Grierson ◽  
Thomas G Brown ◽  
Chirag Rana ◽  
Yuhu Zhai ◽  
...  

Abstract Recent U.S. fusion development strategy reports all recommend that the U.S. should pursue innovative science and technology to enable construction of a Fusion Pilot Plant (FPP) that produces net electricity from fusion at low capital cost. Compact tokamaks have been proposed as a means of potentially reducing the capital cost of a fusion pilot plant. However, compact steady-state tokamak FPPs face the challenge of integrating a high fraction of self-driven current with high core confinement, plasma pressure, and high divertor parallel heat flux. This integration is sufficiently challenging that a dedicated sustained-high-power-density (SHPD) tokamak facility is proposed by the U.S. community as the optimal way to close this integration gap. Performance projections for the steady-state tokamak FPP regime are presented and a preliminary SHPD device with substantial flexibility in lower aspect ratio (A=2-2.5), shaping, and divertor configuration to narrow gaps to a FPP is described.


2022 ◽  
Author(s):  
Yue Ming ◽  
Deng Zhou ◽  
Jinfang Wang

Abstract The effect of equilibrium poloidal flow and pressure gradient on the m/n = 2/1 (m is the poloidal mode number and n is the toroidal mode number) tearing mode instability for tokamak plasmas is investigated. Based on the condition of ≠0 ( is plasma pressure), the radial part of motion equation is derived and approximately solved for large poloidal mode numbers (m). By solving partial differential equation (Whittaker equation) containing second order singularity, the tearing mode stability index Δ′ is obtained. It is shown that, the effect of equilibrium poloidal flow and pressure gradient has the adverse effect on the tearing mode instability when the pressure gradient is nonzero. The poloidal equilibrium flow with pressure perturbation partially reduces the stability of the classical tearing mode. But the larger pressure gradient in a certain poloidal flow velocity range can abate the adverse influence of equilibrium poloidal flow and pressure gradient. The numerical results do also indicate that the derivative of pressure gradient has a significant influence on the determination of instability region of the poloidal flow with pressure perturbation.


2022 ◽  
Author(s):  
Skye Elliott ◽  
Mitsugu Hasegawa ◽  
Hirotaka Sakaue ◽  
Sergey B. Leonov

2022 ◽  
pp. 131-148
Author(s):  
Siti Sarah Safaai ◽  
Linda Agun ◽  
Norizah Redzuan ◽  
Norhayati Ahmad

Cold plasma has attracted lots of attention among researchers because it has a wide range of applications, such as the automotive industry, textile industry, microelectronics, packaging, biomedical technology, food preservation, and agricultural sectors. Scientists have shown a great interest in non-thermal plasma because of its advantages such as low temperature, scalable size, low operation cost, flexible operation, and high electron and reactive specie density. Also, non-thermal plasma can be operated at atmospheric pressure, which is an advantage in the agriculture industry rather than operating in a vacuum. Recently atmospheric cold plasma pressure was selected as one of the plasma technologies applied in the agricultural industry for treating the surface of the seed with environmentally friendly technology that produces no hazardous waste. DBD plasma is one of the cold plasma techniques, which can be easily triggered at atmospheric pressure and room temperature.


2021 ◽  
Vol 258 (1) ◽  
pp. 6
Author(s):  
P. Swaczyna ◽  
T. J. Eddy ◽  
E. J. Zirnstein ◽  
M. A. Dayeh ◽  
D. J. McComas ◽  
...  

Abstract Remote imaging of plasmas in the heliosphere and very local interstellar medium is possible with energetic neutral atoms (ENAs), created through the charge exchange of protons with interstellar neutral atoms. ENA observations collected by the Interstellar Boundary Explorer (IBEX) revealed two distinctive sources. One source is the globally distributed flux (GDF), which extends over the entire sky and varies over large spatial scales. The other source encompasses only a narrow circular band in the sky and is called the IBEX ribbon. Here, we utilize the observed difference in spatial scales of these two ENA sources to separate them. We find that linear combinations of spherical harmonics up to degree ℓ max = 3 can reproduce most of the ENA fluxes observed outside the ribbon region. We use these combinations to model the GDF and the difference between the observed fluxes and the GDF yields estimation of the ribbon emission. The separated ribbon responds with a longer time delay to the solar wind changes than the GDF, suggesting a more distant source of the ribbon ENAs. Moreover, we locate the direction of the maximum plasma pressure based on the GDF. This direction is 17°.2 ± 0°.5 away from the upwind direction within the plane containing the interstellar flow and interstellar magnetic field vectors. This deflection is consistent with the expected position of the maximum external pressure at the heliopause. The maps with separated ribbon and GDF are posted concurrently with this paper and can be used to further study these two sources.


2021 ◽  
Vol 7 (4) ◽  
pp. 24-32
Author(s):  
Nadezhda Kurazhkovskaya ◽  
Oleg Zotov ◽  
Boris Klain

We have analyzed the dynamics of solar wind and interplanetary magnetic field (IMF) parameters during the development of 933 isolated geomagnetic storms, observed over the period from 1964 to 2010. The analysis was carried out using the epoch superposition method at intervals of 48 hrs before and 168 hrs after the moment of Dst minimum. The geomagnetic storms were selected by the type of storm commencement (sudden or gradual) and by intensity (weak, moderate, and strong). The dynamics of the solar wind and IMF parameters was compared with that of the Dst index, which is an indicator of the development of geomagnetic storms. The largest number of storms in the solar activity cycle is shown to occur in the years of minimum average values (close in magnitude to 1) of the solar wind parameter β (β is the ratio of plasma pressure to magnetic pressure). We have revealed that the dynamics of the Dst index is similar to that of the β parameter. The duration of the storm recovery phase follows the characteristic recovery time of the β parameter. We have found out that during the storm main phase the β parameter is close to 1, which reflects the maximum turbulence of solar wind plasma fluctuations. In the recovery phase, β returns to background values β~2‒3.5. We assume that the solar wind plasma turbulence, characterized by the β parameter, can play a significant role in the development of geomagnetic storms.


2021 ◽  
Vol 7 (4) ◽  
pp. 25-34
Author(s):  
Nadezhda Kurazhkovskaya ◽  
Oleg Zotov ◽  
Boris Klain

We have analyzed the dynamics of solar wind and interplanetary magnetic field (IMF) parameters during the development of 933 isolated geomagnetic storms, observed over the period from 1964 to 2010. The analysis was carried out using the epoch superposition method at intervals of 48 hrs before and 168 hrs after the moment of Dst minimum. The geomagnetic storms were selected by the type of storm commencement (sudden or gradual) and by intensity (weak, moderate, and strong). The dynamics of the solar wind and IMF parameters was compared with that of the Dst index, which is an indicator of the development of geomagnetic storms. The largest number of storms in the solar activity cycle is shown to occur in the years of minimum average values (close in magnitude to 1) of the solar wind parameter β (β is the ratio of plasma pressure to magnetic pressure). We have revealed that the dynamics of the Dst index is similar to that of the β parameter. The duration of the storm recovery phase follows the characteristic recovery time of the β parameter. We have found out that during the storm main phase the β parameter is close to 1, which reflects the maximum turbulence of solar wind plasma fluctuations. In the recovery phase, β returns to background values β~2‒3.5. We assume that the solar wind plasma turbulence, characterized by the β parameter, can play a significant role in the development of geomagnetic storms.


Author(s):  
Guodong Zhang ◽  
Weixin Guo ◽  
Lu Wang

Abstract In this work, we have investigated the influences of magnetic island (MI) on electrostatic toroidal ion temperature gradient (ITG) mode, where the ions are described by gyro-kinetic equations including MI, and adiabatic approximation is used for electrons. The eigen-equation for short-wavelength toroidal ITG mode in Fourier-ballooning representation is derived, and the corresponding eigen-value as well as mode structure are solved. Both the flattening effects of MI on plasma pressure and MI-scale shear flow are considered. It is found that when only considering the flattening effects of MI, ITG mode can be stabilized as compared to the case without MI. While, the effective drive of toroidal ITG mode could be enhanced by including MI-scale flow, which indicates the dominant destabilizing by MI-scale flow over the stabilizing by flattening profile and results in higher growth rate than the case without MI. It is also found that the total flow shearing may prevent the ITG turbulence spreading from X-point of MI but not strong enough to prevent spreading from the seperatrix across O-point of larger MI via comparison between the flow shearing rate and the linear growth rate. Furthermore, the corresponding width of lowest-order mode structure in ballooning angle is slightly widened (narrowed) for the case without (with) MI-scale flow, as compared to the case without MI. Besides, the shifted even symmetry in ballooning angle is not qualitatively influenced by the presence of MI. The mode structure is radially asymmetric, but is symmetric with respect to the phase of MI at the O-point.


2021 ◽  
Vol 11 (24) ◽  
pp. 11966
Author(s):  
Artem V. Korzhimanov

A scheme to generate magnetized relativistic plasmas in a laboratory setting is proposed. It is based on the interaction of ultra-high-intensity sub-picosecond laser pulses with few-micron-thick foils or films. By means of Particle-In-Cell simulations, it is shown that energetic electrons produced by the laser and evacuated at the rear of the target trigger an expansion of the target, building up a strong azimuthal magnetic field. It is shown that in the expanding plasma sheath, a ratio of the magnetic pressure and the electron rest-mass energy density exceeds unity, whereas the plasma pressure is lower than the magnetic pressure and the electron gyroradius is lower than the plasma dimension. This scheme can be utilized to study astrophysical extreme phenomena such as relativistic magnetic reconnection in laboratory.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2032
Author(s):  
Alexandre Rondepierre ◽  
Arnaud Sollier ◽  
Laurent Videau ◽  
Laurent Berthe

This review proposes to summarize the development of laser shock applications in a confined regime, mainly laser shock peening, over the past 50 years since its discovery. We especially focus on the relative importance of the source term, which is directly linked to plasma pressure. Discussions are conducted regarding the experimental setups, experimental results, models and numerical simulations. Confined plasmas are described and their specific properties are compared with those of well-known plasmas. Some comprehensive keys are provided to help understand the behavior of these confined plasmas during their interaction with laser light to reach very high pressures that are fundamental for laser shock applications. Breakdown phenomena, which limit pressure generation, are also presented and discussed. A historical review was conducted on experimental data, such as pressure, temperature, and density. Available experimental setups used to characterize the plasma pressure are also discussed, and improvements in metrology developed in recent years are presented. Furthermore, analytical and numerical models based on these experiments and their improvements, are also reviewed, and the case of aluminum alloys is studied through multiple works. Finally, this review outlines necessary future improvements that expected by the laser shock community to improve the estimation of the source term.


Sign in / Sign up

Export Citation Format

Share Document