Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss: 1. Diffusion coefficients and timescales

1994 ◽  
Vol 99 (A3) ◽  
pp. 4069 ◽  
Author(s):  
J. U. Kozyra ◽  
C. E. Rasmussen ◽  
R. H. Miller ◽  
L. R. Lyons
2021 ◽  
Author(s):  
Christos Katsavrias ◽  
Ioannis A. Daglis ◽  
Afroditi Nasi ◽  
Constantinos Papadimitriou ◽  
Marina Georgiou

<p>Radial diffusion has been established as one of the most important mechanisms contributing the acceleration and loss of relativistic electrons in the outer radiation belt. Over the past few years efforts have been devoted to provide empirical relationships of radial diffusion coefficients (D<sub>LL</sub>) for radiation belt simulations yet several studies have suggested that the difference between the various models can be orders of magnitude different at high levels of geomagnetic activity as the observed D<sub>LL</sub> have been shown to be highly event-specific. In the frame of SafeSpace project we have used 12 years (2009 – 2020) of multi-point magnetic and electric field measurements from THEMIS A, D and E satellites to create a database of calculated D<sub>LL</sub>. In this work we present the first statistics on the evolution of D<sub>LL </sub>during the various phases of Solar cycle 24 with respect to the various solar wind parameters and geomagnetic indices.</p><p>This work has received funding from the European Union's Horizon 2020 research and innovation programme “SafeSpace” under grant agreement No 870437.</p>


2021 ◽  
Author(s):  
Jasmine Sandhu ◽  
Jonathan Rae ◽  
John Wygant ◽  
Aaron Breneman ◽  
Sheng Tian ◽  
...  

<p>Ultra Low Frequency (ULF) waves drive radial diffusion of radiation belt electrons, where this process contributes to and, at times, dominates energisation, loss, and large scale transport of the outer radiation belt. In this study we quantify the changes and variability in ULF wave power during geomagnetic storms, through a statistical analysis of Van Allen Probes data for the time period spanning 2012 – 2019. The results show that global wave power enhancements occur during the main phase, and continue into the recovery phase of storms. Local time asymmetries show sources of ULF wave power are both external solar wind driving as well as internal sources from coupling with ring current ions and substorms.</p><p>The statistical analysis demonstrates that storm time ULF waves are able to access lower L values compared to pre-storm conditions, with enhancements observed within L = 4. We assess how magnetospheric compressions and cold plasma distributions shape how ULF wave power propagates through the magnetosphere. Results show that the Earthward displacement of the magnetopause is a key factor in the low L enhancements. Furthermore, the presence of plasmaspheric plumes during geomagnetic storms plays a crucial role in trapping ULF wave power, and contributes significantly to large storm time enhancements in ULF wave power.</p><p>The results have clear implications for enhanced radial diffusion of the outer radiation belt during geomagnetic storms. Estimates of storm time radial diffusion coefficients are derived from the ULF wave power observations, and compared to existing empirical models of radial diffusion coefficients. We show that current Kp-parameterised models, such as the Ozeke et al. [2014] model, do not fully capture the large variability in storm time radial diffusion coefficients or the extent of enhancements in the magnetic field diffusion coefficients.</p>


2021 ◽  
Author(s):  
Qiugang Zong

Abstract. Solar wind forcing, e.g. interplanetary shock and/or solar wind dynamic pressure pulses impact on the Earth’s magnetosphere manifests many fundamental important space physics phenomena including producing electromagnetic waves, plasma heating and energetic particle acceleration. This paper summarizes our present understanding of the magnetospheric response to solar wind forcing in the aspects of radiation belt electrons, ring current ions and plasmaspheric plasma physics based on in situ spacecraft measurements, ground-based magnetometer data, MHD and kinetic simulations. Magnetosphere response to solar wind forcing, is not just a “one-kick” scenario. It is found that after the impact of solar wind forcing on the Earth’s magnetosphere, plasma heating and energetic particle acceleration started nearly immediately and could last for a few hours. Even a small dynamic pressure change of interplanetary shock or solar wind pressure pulse can play a non-negligible role in magnetospheric physics. The impact leads to generate series kind of waves including poloidal mode ultra-low frequency (ULF) waves. The fast acceleration of energetic electrons in the radiation belt and energetic ions in the ring current region response to the impact usually contains two contributing steps: (1) the initial adiabatic acceleration due to the magnetospheric compression; (2) followed by the wave-particle resonant acceleration dominated by global or localized poloidal ULF waves excited at various L-shells. Generalized theory of drift and drift-bounce resonance with growth or decay localized ULF waves has been developed to explain in situ spacecraft observations. The wave related observational features like distorted energy spectrum, boomerang and fishbone pitch angle distributions of radiation belt electrons, ring current ions and plasmaspheric plasma can be explained in the frame work of this generalized theory. It is worthy to point out here that poloidal ULF waves are much more efficient to accelerate and modulate electrons (fundamental mode) in the radiation belt and charged ions (second harmonic) in the ring current region. The results presented in this paper can be widely used in solar wind interacting with other planets such as Mercury, Jupiter, Saturn, Uranus and Neptune, and other astrophysical objects with magnetic fields.


2013 ◽  
Vol 118 (7) ◽  
pp. 4391-4399 ◽  
Author(s):  
Zhigang Yuan ◽  
Ming Li ◽  
Ying Xiong ◽  
Haimeng Li ◽  
Meng Zhou ◽  
...  

2021 ◽  
Vol 44 ◽  
pp. 7-11
Author(s):  
Elena Antonova ◽  

We analyzed the problems of formation of the outer radiation belt (ORB) taking into consideration the latest changes in our understanding of the high-latitude magnetospheric topology. This includes strong evidence that the auroral oval maps to the outer part of the ring current, meanwhile the ORB polar boundary maps inside the auroral oval. Our analysis also includes the variation of the plasma pressure distribution and the time of the acceleration of relativistic electrons during geomagnetic storm. It is shown that the maximum of ORB is formed after the geomagnetic storm in the region of plasma pressure maximum. The position of this maximum agrees with the prediction of the ORB formation theory based on the analysis of ring current development during storm. We emphasize the role of adiabatic processes in the ORB dynamics and the importance of the substorm injections during storm recovery phase for the formation of enhanced fluxes of ORB electrons after the storm.


Sign in / Sign up

Export Citation Format

Share Document