Energetic particle precipitation into the high-latitude ionosphere and the auroral electrojets, 1. Definition of electrojet boundaries using energetic electron spectra and ground-based magnetometer data

1979 ◽  
Vol 84 (A5) ◽  
pp. 1993 ◽  
Author(s):  
J. D. Winningham ◽  
Koji Kawasaki ◽  
Gordon Rostoker
2009 ◽  
Vol 9 (5) ◽  
pp. 22459-22504
Author(s):  
A. Robichaud ◽  
R. Ménard ◽  
S. Chabrillat ◽  
J. de Grandpré ◽  
Y. J. Rochon ◽  
...  

Abstract. In 2003, strong geomagnetic events occurred which produced massive amounts of energetic particles penetrating the top of the atmospheric polar region, significantly perturbing its chemical state down to the middle stratosphere. These events and their effects are generally left unaccounted for in current models of stratospheric chemistry and large differences between observations and models are then noted. In this study, we use a coupled 3-D stratospheric dynamical-chemical model and assimilation system to ingest MIPAS temperature and chemical observations. The goal is to gain further understanding and to evaluate the impacts of EPP (energetic particle precipitation) on stratospheric polar chemistry. Moreover, we investigate the feasibility of assimilating valid "outlier" observations associated with such events. We focus our analysis on OmF (Observation minus Forecast) residuals as they filter out phenomena well reproduced by the model (such as gas phase chemistry, transport, diurnal and seasonal cycles) thus revealing a clear trace of the EPP. Inspection of OmF statistics in both the passive (without chemical assimilation) and active (with chemical assimilation) cases altogether provides a powerful diagnostic tool to assess the model and assimilation system. We also show that passive OmF can permit a satisfactory evaluation of the ozone partial column loss due to EPP effects. Results suggest a small but significant loss of 5–6 DU (Dobson Units) during an EPP-IE (EPP indirect effects) event in the Antarctic winter of 2003, and about only 1 DU for the SPE (solar proton event) of October/November 2003. Despite large differences between the model and MIPAS chemical observations (NO2, HNO3, CH4 and O3), we demonstrate that a careful assimilation of these constituents with only gas phase chemistry included in the model (i.e. no provision for EPP impacts) and with relaxed quality control nearly eliminated the short-term bias and significantly reduced the standard deviation error below 1 hPa.


2006 ◽  
Vol 58 (5) ◽  
pp. 607-616 ◽  
Author(s):  
Masanori Nishino ◽  
Kazuo Makita ◽  
Kiyofumi Yumoto ◽  
Yoshizumi Miyoshi ◽  
Nelson J. Schuch ◽  
...  

2003 ◽  
Vol 21 (6) ◽  
pp. 1249-1256 ◽  
Author(s):  
O. E. Malandraki ◽  
E. T. Sarris ◽  
G. Tsiropoula

Abstract. Solar energetic particle fluxes (Ee > 38 keV) observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF) embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs) detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A) the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B) during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields)


Sign in / Sign up

Export Citation Format

Share Document