particle precipitation
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 55)

H-INDEX

43
(FIVE YEARS 3)

2021 ◽  
Vol 39 (5) ◽  
pp. 899-910
Author(s):  
Stefan Bender ◽  
Patrick J. Espy ◽  
Larry J. Paxton

Abstract. The coupling of the atmosphere to the space environment has become recognized as an important driver of atmospheric chemistry and dynamics. In order to quantify the effects of particle precipitation on the atmosphere, reliable global energy inputs on spatial scales commensurate with particle precipitation variations are required. To that end, we have validated auroral electron densities derived from the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) data products for average electron energy and electron energy flux by comparing them to EISCAT (European Incoherent Scatter Scientific Association) electron density profiles. This comparison shows that SSUSI far-ultraviolet (FUV) observations can be used to provide ionization rate and electron density profiles throughout the auroral region. The SSUSI on board the Defense Meteorological Satellite Program (DMSP) Block 5D3 satellites provide nearly hourly, 3000 km wide high-resolution (10 km×10 km) UV snapshots of auroral emissions. These UV data have been converted to average energies and energy fluxes of precipitating electrons. Here we use those SSUSI-derived energies and fluxes as input to standard parametrizations in order to obtain ionization-rate and electron-density profiles in the E region (90–150 km). These profiles are then compared to EISCAT ground-based electron density measurements. We compare the data from two satellites, DMSP F17 and F18, to the Tromsø UHF radar profiles. We find that differentiating between the magnetic local time (MLT) “morning” (03:00–11:00 MLT) and “evening” (15:00–23:00 MLT) provides the best fit to the ground-based data. The data agree well in the MLT morning sector using a Maxwellian electron spectrum, while in the evening sector using a Gaussian spectrum and accounting for backscattered electrons achieved optimum agreement with EISCAT. Depending on the satellite and MLT period, the median of the differences varies between 0 % and 20 % above 105 km (F17) and ±15 % above 100 km (F18). Because of the large density gradient below those altitudes, the relative differences get larger, albeit without a substantially increasing absolute difference, with virtually no statistically significant differences at the 1σ level.


2021 ◽  
Author(s):  
Irina Mironova ◽  
Miriam Sinnhuber ◽  
Galina Bazilevskaya ◽  
Mark Clilverd ◽  
Bernd Funke ◽  
...  

Abstract. Energetic particle precipitation leads to ionization in the Earth's atmosphere, initiating the formation of active chemical species which destroy ozone and have the potential to impact atmospheric composition and dynamics down to the troposphere. We report on one exceptionally strong high-energy electron precipitation event detected by balloon measurements in middle latitudes on 14 December 2009 with ionization rates locally comparable to strong solar proton events. This electron precipitation was likely caused by wave-particle interactions in the slot region between the inner and outer radiation belts, connected with still not well understood natural phenomena in the magnetosphere. Satellite observations of odd nitrogen and nitric acid are consistent with wide-spread electron precipitation into magnetic midlatitudes. Simulations with a 3D chemistry-climate model indicate almost complete destruction of ozone in the upper mesosphere over the region where high-energy electron precipitation occurred. Such an extraordinary type of energetic particle precipitation can have major implications for the atmosphere, and their frequency and strength should be carefully studied.


2021 ◽  
Vol 39 (5) ◽  
pp. 795-809
Author(s):  
Florine Enengl ◽  
Noora Partamies ◽  
Nickolay Ivchenko ◽  
Lisa Baddeley

Abstract. Energetic particle precipitation (EPP) has the potential to change the neutral atmospheric temperature in the mesopause region. However, recent results are inconsistent, leaving the mechanism and the actual effect still unresolved. In this study we have searched for electron precipitation events and investigated a possible correlation between D-region electron density enhancements and simultaneous neutral temperature changes. The rotational temperature of the excited hydroxyl (OH) molecules is retrieved from the infrared spectrum of the OH airglow. The electron density is monitored by the European Incoherent Scatter Scientific Association (EISCAT) Svalbard Radar. We use all available experiments from the International Polar Year (IPY) in 2007–2008 until February 2019. Particle precipitation events are characterized by rapid increases in electron density by a factor of 4 at an altitude range of 80–95 km, which overlaps with the nominal altitude of the infrared OH airglow layer. The OH airglow measurements and the electron density measurements are co-located. Six of the 10 analysed electron precipitation events are associated with a temperature decrease of 10–20 K. Four events were related to a temperature change of less than 10 K. We interpret the results in terms of the change in the chemical composition in the mesosphere. Due to EPP ionization the population of excited OH at the top of the airglow layer may decrease. As a consequence, the airglow peak height changes and the temperatures are probed at lower altitudes. The observed change in temperature thus depends on the behaviour of the vertical temperature profile within the airglow layer. This is in agreement with conclusions of earlier studies but is, for the first time, constructed from electron precipitation measurements as opposed to proxies. The EPP-related temperature change recovers very fast, typically within less than 60 min. We therefore further conclude that this type of EPP event reaching the mesopause region would only have a significant impact on the longer-term heat balance in the mesosphere if the lifetime of the precipitation was much longer than that of an EPP event (30–60 min) found in this study.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1059
Author(s):  
Sudipta Sasmal ◽  
Swati Chowdhury ◽  
Subrata Kundu ◽  
Dimitrios Z. Politis ◽  
Stelios M. Potirakis ◽  
...  

We present a comprehensive analysis of pre-seismic anomalies as computed from the ground and space-based techniques during the recent Samos earthquake in Greece on 30 October 2020, with a magnitude M = 6.9. We proceed with a multi-parametric approach where pre-seismic irregularities are investigated in the stratosphere, ionosphere, and magnetosphere. We use the convenient methods of acoustics and electromagnetic channels of the Lithosphere–Atmosphere–Ionosphere-Coupling (LAIC) mechanism by investigating the Atmospheric Gravity Wave (AGW), magnetic field, electron density, Total Electron Content (TEC), and the energetic particle precipitation in the inner radiation belt. We incorporate two ground-based IGS GPS stations DYNG (Greece) and IZMI (Turkey) for computing the TEC and observed a significant enhancement in daily TEC variation around one week before the earthquake. For the space-based observation, we use multiple parameters as recorded from Low Earth Orbit (LEO) satellites. For the AGW, we use the SABER/TIMED satellite data and compute the potential energy of stratospheric AGW by using the atmospheric temperature profile. It is found that the maximum potential energy of such AGW is observed around six days before the earthquake. Similar AGW is also observed by the method of wavelet analysis in the fluctuation in TEC values. We observe significant energetic particle precipitation in the inner radiation belt over the earthquake epicenter due to the conventional concept of an ionospheric-magnetospheric coupling mechanism by using an NOAA satellite. We first eliminate the particle count rate (CR) due to possible geomagnetic storms and South Atlantic Anomaly (SAA) by the proper choice of magnetic field B values. After the removal of the statistical background CRs, we observe a significant enhancement of CR four and ten days before the mainshock. We use Swarm satellite outcomes to check the magnetic field and electron density profile over a region of earthquake preparation. We observe a significant enhancement in electron density one day before the earthquake. The parameters studied here show an overall pre-seismic anomaly from a duration of ten days to one day before the earthquake.


2021 ◽  
Vol 39 (4) ◽  
pp. 687-700
Author(s):  
Vladimir B. Belakhovsky ◽  
Yaqi Jin ◽  
Wojciech J. Miloch

Abstract. The comparative research of the influence of different types of auroral particle precipitation and polar cap patches (PCPs) on the global positioning system (GPS) signals disturbances in the polar ionosphere was done. For this purpose, we use the GPS scintillation receivers at Ny-Ålesund and Skibotn, operated by the University of Oslo. The presence of the auroral particle precipitation and polar cap patches was determined by using data from the EISCAT 42m radar on Svalbard. The optical aurora observations in 557.7 and 630.0 nm spectrum lines on Svalbard were used as well for the detection of ionospheric disturbances. The cusp identification was done with using SuperDARN (Hankasalmi) data. We consider events when the simultaneous EISCAT 42m and GPS data were available for the years 2010–2017, and in this paper we present, in detail, typical examples describing the overall picture, and we present the statistics for 120 events. We considered the dayside/cusp precipitation, substorm precipitation, daytime and nighttime PCPs, and precipitation associated with the interplanetary shock wave arrival. We demonstrate that substorm-associated precipitation (even without PCPs) can lead to a strong GPS phase (σϕ) scintillations up to ∼ 1.5–3 radians, which is much stronger than those usually produced by other types of considered ionosphere disturbances. The value of the substorm-phase scintillations in general correlate with the value of the geomagnetic field disturbance. But sometimes even a small geomagnetic substorm, when combined with the PCPs, produces quite strong phase scintillations. Cusp phase scintillations are lower than dayside PCPs scintillations. PCPs can lead to stronger ROT (rate of total electron content) variations than other types of ionosphere disturbances. So our observations suggest that the substorms and PCPs, being different types of the high-latitude disturbances, lead to the development of different types and scales of ionospheric irregularities.


Author(s):  
Mirko D’Auria ◽  
Miriam Willger ◽  
David Piña ◽  
Nora Ventosa ◽  
Andreas S. Braeuer

Space Weather ◽  
2021 ◽  
Author(s):  
Ryan M. McGranaghan ◽  
Jack Ziegler ◽  
Téo Bloch ◽  
Spencer Hatch ◽  
Enrico Camporeale ◽  
...  

2021 ◽  
Author(s):  
Stefan Bender ◽  
Patrick J. Espy ◽  
Larry J. Paxton

Abstract. The coupling of the atmosphere to the space environment has become recognized as an important driver of atmospheric chemistry and dynamics. In order to quantify the effects of particle precipitation on the atmosphere, reliable global energy inputs on spatial scales commensurate with particle precipitation variations are required. To that end, we have validated the Special Sensor Ultraviolet Spectrographic Imagers (SSUSI) products for average electron energy and electron energy flux by comparing to EISCAT electron density profiles. This comparison shows that SSUSI FUV observations can be used to provide ionization rate profiles throughout the auroral region. The SSUSI on board the Defense Meteorological Satellite Program (DMSP) Block 5D3 satellites provide nearly hourly, high-resolution UV snapshots of auroral emissions. These UV data have been converted to average energies and energy fluxes of precipitating electrons. Here we use those SSUSI-derived energies and fluxes to drive standard parametrizations in order to obtain ionization-rate and electron-density profiles in the E-region (90–150 km). These profiles are then compared to EISCAT ground-based electron density measurements. We compare the data from two satellites, DMSP F17 and F18, to the Tromsø UHF radar profiles. We find that differentiating between the magnetic local time (MLT) morning (3–11 h) and evening (15–23 h) provides the best fit to the ground-based data. The data agree well in the MLT morning sector using a Maxwellian electron spectrum, while in the evening sector using a Gaussian spectrum and accounting for bounce-electrons achieved optimum agreement with EISCAT. Depending on the satellite and MLT period, the median of the differences varies between 0 and 20 % above 105 km (F17) and ±15 % above 100 km (F18). Because of the large density gradient below those altitudes, the relative differences get larger, albeit without a substantially increasing absolute difference, with virtually no statistically significant differences at the 1 σ level.


Sign in / Sign up

Export Citation Format

Share Document