On the modifications of the whistler mode instability in the magnetosphere in the presence of parallel electric field by cold plasma injection

1980 ◽  
Vol 85 (A10) ◽  
pp. 5138-5142 ◽  
Author(s):  
K.D. Misra ◽  
B.D. Singh
1984 ◽  
Vol 31 (2) ◽  
pp. 263-274
Author(s):  
Indra Mohan Lal Das ◽  
R. P. Singh

The propagation characteristics of right-hand circularly polarized whistler mode waves propagating parallel to the external magnetic field in an anisotropic plasma have been reformulated including the effect of a parallel electric field. Analytical expressions for the real frequency and growth rate have been obtained for the full range of the parameters β (the ratio of particle pressure to magnetic pressure of the hot particles), A (temperature anisotropy) and P ( = βA(A + 1)2) without any restriction on the magnitude of the imaginary part of the wave frequency. The effect of cold plasma injection on the marginal instability has also been studied. Possible application of the present theory to the atmospheres of Earth and Jupiter has been discussed.


2021 ◽  
Vol 2062 (1) ◽  
pp. 012019
Author(s):  
Kumari Neeta Shukla ◽  
Devi Singh ◽  
R S Pandey

Abstract Whistlers are believed to be generated by its own and responsible to evolve dynamical properties of magnetized planetary environment. Growing whistler instability can cause other uncertainties in the magnetosphere and evident to be generated by mean of injection events and temperature variance in plasma environment. In this paper the empirical dispersion relation has developed for parallel propagating whistler mode instability in an infinite saturnian magneto plasma in the presence of perpendicular electric field for ring distribution function having non-monotonous nature. Method of characteristics solutions alongside kinetic approach found to be most suitable in order to achieve perturbed plasma states. The perturbed and unperturbed particle trajectories have taken into consideration to determine perturbed distribution function. A remarkable growth rate expression with added hot plasma injection has been calculated in inner magnetosphere near 6.18 Rs. The results obtained using demonstrative value of the parameters suited to the Saturnian magnetosphere have been computed and discussed. Pressure (Temperature) anisotropy is found to be a peculiar source of free energy for whistler mode instability. The AC frequency irrespective of its magnitude, affects the growth rate significantly. The bulk of energetic hot electrons injection influences the growth rate by increasing its peak value. The result obtained provide the important view of wave particle interaction and useful to analyze the VLF emissions observed over a wide frequency range.


2003 ◽  
Vol 10 (1/2) ◽  
pp. 45-52 ◽  
Author(s):  
R. E. Ergun ◽  
L. Andersson ◽  
C. W. Carlson ◽  
D. L. Newman ◽  
M. V. Goldman

Abstract. Direct observations of magnetic-field-aligned (parallel) electric fields in the downward current region of the aurora provide decisive evidence of naturally occurring double layers. We report measurements of parallel electric fields, electron fluxes and ion fluxes related to double layers that are responsible for particle acceleration. The observations suggest that parallel electric fields organize into a structure of three distinct, narrowly-confined regions along the magnetic field (B). In the "ramp" region, the measured parallel electric field forms a nearly-monotonic potential ramp that is localized to ~ 10 Debye lengths along B. The ramp is moving parallel to B at the ion acoustic speed (vs) and in the same direction as the accelerated electrons. On the high-potential side of the ramp, in the "beam" region, an unstable electron beam is seen for roughly another 10 Debye lengths along B. The electron beam is rapidly stabilized by intense electrostatic waves and nonlinear structures interpreted as electron phase-space holes. The "wave" region is physically separated from the ramp by the beam region. Numerical simulations reproduce a similar ramp structure, beam region, electrostatic turbulence region and plasma characteristics as seen in the observations. These results suggest that large double layers can account for the parallel electric field in the downward current region and that intense electrostatic turbulence rapidly stabilizes the accelerated electron distributions. These results also demonstrate that parallel electric fields are directly associated with the generation of large-amplitude electron phase-space holes and plasma waves.


Sign in / Sign up

Export Citation Format

Share Document