Laboratory Studies of the Acoustic Properties of Samples From Salt on Sea Scientific Drilling Project and Their Relation to Microstructure and Field Measurements

1988 ◽  
Vol 93 (B11) ◽  
pp. 13057-13067 ◽  
Author(s):  
P. A. Tarif ◽  
R. H. Wilkens ◽  
C. H. Cheng ◽  
F. L. Paillet
1986 ◽  
Author(s):  
J.H. Sass ◽  
S.S. Priest ◽  
L.C. Robison ◽  
J.D. Hendricks

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3306
Author(s):  
Renato Somma ◽  
Daniela Blessent ◽  
Jasmin Raymond ◽  
Madeline Constance ◽  
Lucy Cotton ◽  
...  

Unconventional geothermal resource development can contribute to increase power generation from renewable energy sources in countries without conventional hydrothermal reservoirs, which are usually associated with magmatic activity and extensional faulting, as well as to expand the generation in those regions where conventional resources are already used. Three recent drilling experiences focused on the characterization of unconventional resources are described and compared: the Campi Flegrei Deep Drilling Project (CFDDP) in Italy, the United Downs Deep Geothermal Power (UDDGP) project in the United Kingdom, and the DEEP Earth Energy Production in Canada. The main aspects of each project are described (geology, drilling, data collection, communication strategies) and compared to discuss challenges encountered at the tree sites considered, including a scientific drilling project (CFDDP) and two industrial ones (UDDGP and DEEP). The first project, at the first stage of pilot hole, although not reaching deep supercritical targets, showed extremely high, very rare thermal gradients even at shallow depths. Although each project has its own history, as well as social and economic context, the lessons learned at each drilling site can be used to further facilitate geothermal energy development.


1984 ◽  
Vol 32 (5) ◽  
pp. 495 ◽  
Author(s):  
BA Myers ◽  
TF Neales

Field observations of some parameters of the water relations of the two eucalypt species E. behriana and E. microcarpa in dry sclerophyll, mallee and woodland vegetation were made at three sites from 1980 to 1983. The mean ( n = 519) water potential measured at dawn (Ψdawn) was -3.07± 0.01 MPa and fluctuated seasonally with rainfall intensity over the range -2.0 ± 0, 1 to -4.4 ± 0.1 MPa ( n = 30). Both species behaved similarly and some osmotic adjustment took place. Mean leaf conductance (gs) varied between 0.151 ± 0.006 and 0.003 ± 0.001 mol m-2 s-1 . Maximum daily values of gs were linearly related to Ψdawn as it fluctuated seasonally. The slope of this linear regression was not significantly different from that relating these values of gs and Ψ, when both were measured concurrently. There were thus no indications of a distinction between the responses of gs to long- and short-term fluctuations of Ψ or of a threshold-type response of gs to Ψ. Field measurements indicated that gs was decreased at high values of vapour pressure difference (Δe). In laboratory studies with seedlings of the two species gs decreased from 0.5 to 0.1 mol m-2 s-I as Δe increased from 0.5 to 3.0 kPa. Leaf and canopy conductance were the predominant plant determinants of transpiration rate (Er) in this type of vegetation which has the capacity to restrict Et via the effect of water potential (Ψ) on gs and also by the response of gs to Δe. Some of the water relations parameters of E. behriana indicated that this species was better able to withstand drought than was E microcarpa.


2021 ◽  
Author(s):  
Baobin Han ◽  
Peng Cheng ◽  
Yihang Yu ◽  
Wenda Yang ◽  
Zhilin Tian ◽  
...  

<p>Laboratory studies indicated that soil could produce considerable nitrous acid (HONO) emissions, which is the main primary source of hydroxyl radical (OH) in the troposphere. However, very few field observations of HONO emission from soil were reported. In order to relate laboratory results and field measurements, we measured HONO emissions from 7 representative agricultural soils (rice, vegetables, orchards, peanuts, potatoes, sugarcane and maize) in Guangdong under controlled laboratory conditions, and took flux measurements on 2 of them (rice and vegetables) by dynamic chambers in the field. Generally, release rates of HONO from the seven soils increased with temperature and varied with soil moisture, and the optimum release rates can be reached under specific values of water-filled pore space (WFPS), which is considered to be beneficial to nitrification. The seven soils' optimum release rates ranged from 1.24 to 43.19 ng kg<sup>-1</sup> s<sup>-1</sup>, and the Q<sub>10</sub> (It is defined as the multiple of the increase of soil gas emission rate when the temperature increases by 10℃) ranged from 1.03 to 2.25. Formulas were deduced from the lab results to express HONO emissions for every soil. Flux measurements on two soils varied around -1 to 4 ng N m<sup>-2</sup> s<sup>-1</sup>, and both showed similar diurnal variations with peaks around noontime and very low even negative values during nighttime. There were good correlations between HONO fluxes and soil temperature (R<sup>2</sup>=0.5). Furthermore, irrigation enhanced the HONO emission substantially. However, a large discrepancy existed between soil HONO emissions measured in lab and low HONO fluxes in field. More investigations are needed to explain the paradox.</p>


Sign in / Sign up

Export Citation Format

Share Document