scholarly journals Review of Recent Drilling Projects in Unconventional Geothermal Resources at Campi Flegrei Caldera, Cornubian Batholith and Williston Sedimentary Basin

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3306
Author(s):  
Renato Somma ◽  
Daniela Blessent ◽  
Jasmin Raymond ◽  
Madeline Constance ◽  
Lucy Cotton ◽  
...  

Unconventional geothermal resource development can contribute to increase power generation from renewable energy sources in countries without conventional hydrothermal reservoirs, which are usually associated with magmatic activity and extensional faulting, as well as to expand the generation in those regions where conventional resources are already used. Three recent drilling experiences focused on the characterization of unconventional resources are described and compared: the Campi Flegrei Deep Drilling Project (CFDDP) in Italy, the United Downs Deep Geothermal Power (UDDGP) project in the United Kingdom, and the DEEP Earth Energy Production in Canada. The main aspects of each project are described (geology, drilling, data collection, communication strategies) and compared to discuss challenges encountered at the tree sites considered, including a scientific drilling project (CFDDP) and two industrial ones (UDDGP and DEEP). The first project, at the first stage of pilot hole, although not reaching deep supercritical targets, showed extremely high, very rare thermal gradients even at shallow depths. Although each project has its own history, as well as social and economic context, the lessons learned at each drilling site can be used to further facilitate geothermal energy development.


Author(s):  
M. Hamzah

Classical Oil Country Tubular Goods (OCTG) procurement approach has been practiced in the indus-try with the typical process of setting a quantity level of tubulars ahead of the drilling project, includ-ing contingencies, and delivery to a storage location close to the drilling site. The total cost of owner-ship for a drilling campaign can be reduced in the range of 10-30% related to tubulars across the en-tire supply chain. In recent decades, the strategy of OCTG supply has seen an improvement resulting in significant cost savings by employing the integrated tubular supply chain management. Such method integrates the demand and supply planning of OCTG of several wells in a drilling project and synergize the infor-mation between the pipes manufacturer and drilling operators to optimize the deliveries, minimizing inventory levels and safety stocks. While the capital cost of carrying the inventory of OCTG can be reduced by avoiding the procurement of substantial volume upfront for the entire project, several hidden costs by carrying this inventory can also be minimized. These include storage costs, maintenance costs, and costs associated to stock obsolescence. Digital technologies also simplify the tasks related to the traceability of the tubulars since the release of the pipes from the manufacturing facility to the rig floor. Health, Safety, and Environmental (HSE) risks associated to pipe movements on the rig can be minimized. Pipe-by-pipe traceability provides pipes’ history and their properties on demand. Digitalization of the process has proven to simplify back end administrative tasks. The paper reviews the OCTG supply methods and lays out tangible improvement factors by employ-ing an alternative scheme as discussed in the paper. It also provides an insight on potential cost savings based on the observed and calculated experiences from several operations in the Asia Pacific region.



1986 ◽  
Author(s):  
J.H. Sass ◽  
S.S. Priest ◽  
L.C. Robison ◽  
J.D. Hendricks


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4317
Author(s):  
Štefan Bojnec ◽  
Alan Križaj

This paper analyzes electricity markets in Slovenia during the specific period of market deregulation and price liberalization. The drivers of electricity prices and electricity consumption are investigated. The Slovenian electricity markets are analyzed in relation with the European Energy Exchange (EEX) market. Associations between electricity prices on the one hand, and primary energy prices, variation in air temperature, daily maximum electricity power, and cross-border grid prices on the other hand, are analyzed separately for industrial and household consumers. Monthly data are used in a regression analysis during the period of Slovenia’s electricity market deregulation and price liberalization. Empirical results show that electricity prices achieved in the EEX market were significantly associated with primary energy prices. In Slovenia, the prices for daily maximum electricity power were significantly associated with electricity prices achieved on the EEX market. The increases in electricity prices for households, however, cannot be explained with developments in electricity prices on the EEX market. As the period analyzed is the stage of market deregulation and price liberalization, this can have important policy implications for the countries that still have regulated and monopolized electricity markets. Opening the electricity markets is expected to increase competition and reduce pressures for electricity price increases. However, the experiences and lessons learned among the countries following market deregulation and price liberalization are mixed. For industry, electricity prices affect cost competitiveness, while for households, electricity prices, through expenses, affect their welfare. A competitive and efficient electricity market should balance between suppliers’ and consumers’ market interests. With greening the energy markets and the development of the CO2 emission trading market, it is also important to encourage use of renewable energy sources.







2021 ◽  
Author(s):  
Rahul Kamble ◽  
Youssef Ali Kassem ◽  
Kshudiram Indulkar ◽  
Kieran Price ◽  
Majid Mohammed A. ◽  
...  

Abstract Coring during the development phase of an oil and gas field is very costly; however, the subsurface insights are indispensable for a Field Development Team to study reservoir characterization and well placement strategy in Carbonate formations (Dolomite and limestone with Anhydrite layers). The objective of this case study is to capture the successful coring operation in high angle ERD wells, drilled from the fixed well location on a well pad of an artificial island located offshore in the United Arab Emirates. The well was planned and drilled at the midpoint of the development drilling campaign, which presented a major challenge of wellbore collision risk whilst coring in an already congested area. The final agreed pilot hole profile was designed to pass through two adjacent oil producer wells separated by a geological barrier, however, the actual separation ratio was < 1.6 (acceptable SF to drill the well safely), which could have compromised the planned core interval against the Field Development Team's requirement. To mitigate the collision risks with offset wells during the coring operation, a low flow rate MWD tool was incorporated in the coring BHA to monitor the well path while cutting the core. After taking surveys, IFR and MSA corrections were applied to MWD surveys, which demonstrated an acceptable increase in well separation factor as per company Anti-Collision Risk Policy to continue coring operations without shutting down adjacent wells. A total of 3 runs incorporating the MWD tool in the coring BHA were performed out of a total of 16 runs. The maximum inclination through the coring interval was 73° with medium well departure criteria. The main objective of the pilot hole was data gathering, which included a full suite of open hole logging, seismic and core cut across the target reservoir. A total of 1295 ft of core was recovered in a high angle well across the carbonate formation's different layers, with an average of 99% recovery in each run. These carbonate formations contain between 2-4% H2S and exhibit some fractured layers of rock. To limit and validate the high cost of coring operations in addition to core quality in the development phase, it was necessary to avoid early core jamming in the dolomite, limestone and anhydrite layers, based on previous coring runs in the field. Core jamming leads to early termination of the coring run and results in the loss of a valuable source of information from the cut core column in the barrel. Furthermore, it would have a major impact on coring KPIs, consequently compromising coring and well objectives. Premature core jamming and less-than-planned core recovery from previous cored wells challenged and a motivated the team to review complete field data and lessons learned from cored offset wells. Several coring systems were evaluated and finally, one coring system was accepted based on core quality as being the primary KPI. These lessons learned were used for optimizing certain coring tools technical improvements and procedures, such as core barrel, core head, core handling and surface core processing in addition to the design of drilling fluids and well path. The selection of a 4" core barrel and the improved core head design with optimized blade profile and hold on sharp polished cutters with optimized hydraulic efficiency, in addition to the close monitoring of coring parameters, played a significant role in improving core cutting in fractured carbonate formation layers. This optimization helped the team to successfully complete the 1st high angle coring operation offshore in the United Arab Emirates. This case study shares the value of offset wells data for coring jobs to reduce the risk of core jamming, optimize core recovery and reduce wellbore collision risks. It also details BHA design decisions(4"core barrel, core head, low flow rate MWD tool and appropriate coring parameters), all of which led to a new record of cutting 1295 ft core in a carbonate formation with almost 100% recovery on surface.



Sign in / Sign up

Export Citation Format

Share Document