A two-dimensional coupled ice-ocean model of the Bering Sea marginal ice zone

1989 ◽  
Vol 94 (C8) ◽  
pp. 10921 ◽  
Author(s):  
Lakshmi H. Kantha ◽  
George L. Mellor
1984 ◽  
Vol 5 ◽  
pp. 111-114 ◽  
Author(s):  
C. H. Pease ◽  
J. E. Overland

A free-drift sea-ice model for advection is described which includes an interactive wind-driven ocean for closure. A reduced system of equations is solved economically by a simple iteration on the water stress. The performance of the model is examined through a sensitivity study considering ice thickness, Ekman-layer scaling, wind speed, and drag coefficients. A case study is also presented where the model is driven by measured winds and the resulting drift rate compared to measured ice-drift rate for a three-day period during March 1981 at about 80 km inside the boundary of the open pack ice in the Bering Sea. The advective model is shown to be sensitive to certain assumptions. Increasing the scaling parameter A for the Ekman depth in the ocean model from 0.3 to 0.4 causes a 10 to 15% reduction in ice speed but only a slight decrease in rotation angle (α) with respect to the wind. Modeled α is strongly a function of ice thickness, while speed is not very sensitive to thickness. Ice speed is sensitive to assumptions about drag coefficients for the upper (CA) and lower (CW) surfaces of the ice. Specifying CA and the ratio of CA to CW are important to the calculations.


1984 ◽  
Vol 5 ◽  
pp. 111-114 ◽  
Author(s):  
C. H. Pease ◽  
J. E. Overland

A free-drift sea-ice model for advection is described which includes an interactive wind-driven ocean for closure. A reduced system of equations is solved economically by a simple iteration on the water stress. The performance of the model is examined through a sensitivity study considering ice thickness, Ekman-layer scaling, wind speed, and drag coefficients. A case study is also presented where the model is driven by measured winds and the resulting drift rate compared to measured ice-drift rate for a three-day period during March 1981 at about 80 km inside the boundary of the open pack ice in the Bering Sea.The advective model is shown to be sensitive to certain assumptions. Increasing the scaling parameter A for the Ekman depth in the ocean model from 0.3 to 0.4 causes a 10 to 15% reduction in ice speed but only a slight decrease in rotation angle (α) with respect to the wind. Modeled α is strongly a function of ice thickness, while speed is not very sensitive to thickness. Ice speed is sensitive to assumptions about drag coefficients for the upper (CA) and lower (CW) surfaces of the ice. Specifying CA and the ratio of CA to CW are important to the calculations.


2019 ◽  
Author(s):  
Kelly Kearney ◽  
Albert Hermann ◽  
Wei Cheng ◽  
Ivonne Ortiz ◽  
Kerim Aydin

Abstract. The Bering Sea is a highly productive ecosystem, supporting a variety of fish, seabird, and marine mammal populations as well as large commercial fisheries. Due to its unique shelf geometry and the presence of seasonal sea ice, the processes controlling productivity in the Bering Sea ecosystem span the pelagic water column, the benthic sea floor, and the sympagic sea ice environments. The BESTNPZ model has been developed to simulate the lower trophic level processes throughout this region. Here, we present a version of this lower trophic level model coupled to a three-dimensional regional ocean model for the Bering Sea. We quantify the model's ability to reproduce key physical features of biological importance as well as its skill in capturing the seasonal and interannual variations in primary and secondary productivity. We find that the ocean model demonstrates considerable skill in replicating observed horizontal and vertical patterns of water movement, mixing, and stratification, as well as the temperature and salinity signatures of various water masses throughout the Bering Sea. It is also able to capture the mean seasonal cycle of primary production observed on the data-rich eastern middle shelf. However, its ability to replicate domain-wide patterns in nutrient cycling, primary production, and zooplankton community composition, particularly with respect to the interannual variations that are important in a fisheries management context, remains limited.


1991 ◽  
Vol 15 ◽  
pp. 37-44 ◽  
Author(s):  
Jinlun Zhang ◽  
William D. Hibler

A 40 km-resolution ice—ocean model of the Bering Sea is used to investigate the effects of ocean circulation and vertical convection on the seasonal and interannual ice extent variations in the Bering Sea. The model is driven with daily time-varying atmospheric forcing from 1981–83. A series of sensitivity studies is carried out to examine the effects of the vertical diffusion and precipitation on the ice margin and the effect of stratification on the ocean circulation. For comparison, an ice-only simulation, with a motionless oceanic boundary layer of fixed depth, is also carried out. In the Aleutian Basin, the ice-ocean model exhibits a cyclonic ocean circulation which consists mainly of a baroclinic current component. On the eastern Bering Sea shelf the flow is mainly barotropic, with a northwestern shelf flow along the Alaskan coast and a return southeastern flow along the shelf break. The seasonal and interannual variability of the ice margin is significantly better simulated by the ice-ocean model than by the ice-only model, especially when an enhanced vertical diffusion is used. However, the seasonal cycle of ice extent exhibits too little ice in the southeastern Bering Sea and excessive ice in the northwest. The advance and retreat of the ice edge also tends to lag behind the observed results by a few weeks. The inclusion of precipitation improves the ice extent in the southeast. The results suggest that an enhanced vertical resolution, together with a more complete boundary layer formulation, will be required to achieve realistic seasonal simulations of the Bering Sea ice–ocean system.


1991 ◽  
Vol 15 ◽  
pp. 37-44 ◽  
Author(s):  
Jinlun Zhang ◽  
William D. Hibler

A 40 km-resolution ice—ocean model of the Bering Sea is used to investigate the effects of ocean circulation and vertical convection on the seasonal and interannual ice extent variations in the Bering Sea. The model is driven with daily time-varying atmospheric forcing from 1981–83. A series of sensitivity studies is carried out to examine the effects of the vertical diffusion and precipitation on the ice margin and the effect of stratification on the ocean circulation. For comparison, an ice-only simulation, with a motionless oceanic boundary layer of fixed depth, is also carried out. In the Aleutian Basin, the ice-ocean model exhibits a cyclonic ocean circulation which consists mainly of a baroclinic current component. On the eastern Bering Sea shelf the flow is mainly barotropic, with a northwestern shelf flow along the Alaskan coast and a return southeastern flow along the shelf break. The seasonal and interannual variability of the ice margin is significantly better simulated by the ice-ocean model than by the ice-only model, especially when an enhanced vertical diffusion is used. However, the seasonal cycle of ice extent exhibits too little ice in the southeastern Bering Sea and excessive ice in the northwest. The advance and retreat of the ice edge also tends to lag behind the observed results by a few weeks. The inclusion of precipitation improves the ice extent in the southeast. The results suggest that an enhanced vertical resolution, together with a more complete boundary layer formulation, will be required to achieve realistic seasonal simulations of the Bering Sea ice–ocean system.


Sign in / Sign up

Export Citation Format

Share Document