Inverse solution modeling of the complex-valued, frequency dependent electrical properties of natural geologic materials

Radio Science ◽  
1987 ◽  
Vol 22 (4) ◽  
pp. 511-519 ◽  
Author(s):  
E. Baranyi ◽  
O. G. Jensen ◽  
P. T. LaFleche
Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. A51-A56 ◽  
Author(s):  
J. Germán Rubino ◽  
Gabriel A. Castromán ◽  
Tobias M. Müller ◽  
Leonardo B. Monachesi ◽  
Fabio I. Zyserman ◽  
...  

Numerical simulations of seismic wave propagation in fractured media are often performed in the framework of the linear slip theory (LST). Therein, fractures are represented as interfaces and their mechanical properties are characterized through a compliance matrix. This theory has been extended to account for energy dissipation due to viscous friction within fluid-filled fractures by using complex-valued frequency-dependent compliances. This is, however, not fully adequate for fractured porous rocks in which wave-induced fluid flow (WIFF) between fractures and host rock constitutes a predominant seismic attenuation mechanism. In this letter, we develop an approach to incorporate WIFF effects directly into the LST for a 1D system via a complex-valued, frequency-dependent fracture compliance. The methodology is validated for a medium permeated by regularly distributed planar fractures, for which an analytical expression for the complex-valued normal compliance is determined in the framework of quasistatic poroelasticity. There is good agreement between synthetic seismograms generated using the proposed recipe and those obtained from comprehensive, but computationally demanding, poroelastic simulations.


1991 ◽  
Vol 96 (B10) ◽  
pp. 16205 ◽  
Author(s):  
Jeffery J. Roberts ◽  
James A. Tyburczy

2014 ◽  
Vol 86 (5) ◽  
pp. 765-774 ◽  
Author(s):  
Chris R. Bowen ◽  
Sam Buschhorn ◽  
Vana Adamaki

AbstractIn this paper we present characterization data for carbon nanotube (CNT)-epoxy and thermally reduced graphene oxide (TRGO)-epoxy nano-composites. The frequency-dependent ac conductivity and permittivity are examined as a function of volume fraction of carbon-based filler. The measured electrical properties and their frequency dependency are evaluated on the basis that such composites can be considered as a network of resistors and capacitors, whereby the resistors represent the conductive component (CNT or TRGO) and the capacitors are the insulating component (epoxy matrix). Differences observed between the frequency-dependent electrical properties of the CNT-epoxy and TRGO-epoxy composites are explained in terms of the different electrical conductivities of the CNT and TRGO phase.


2020 ◽  
Vol 242 ◽  
pp. 122513 ◽  
Author(s):  
Snigdha Paramita Mantry ◽  
Amalesh Kumar ◽  
P.M. Sarun

Author(s):  
Mehrdad Mokhtari ◽  
Zulkurnain Abdul-Malek ◽  
Chin Leong Wooi

<span>The effect of frequency dependent soil properties on the impedance and transient response of the grounding electrode was investigated. The frequency dependent soil models as proposed by Scott, Smith-Longmire, and Visacro-Alipio were critically reviewed. A novel method was proposed to integrate the frequency dependent soil electrical properties in the circuit model of grounding electrode. To validate the application of the method in circuit model, the voltage responses of the grounding electrode obtained by the circuit and electromagnetic models were compared. The voltage responses obtained by the circuit and electromagnetic models were in excellent agreement in terms of voltage peaks and wave shapes. The differences between voltage peaks obtained by the circuit and electromagnetic models were found less than 1%.</span>


Sign in / Sign up

Export Citation Format

Share Document