An Inverse Solution for 2D Electrical Impedance Tomography Based on Electrical Properties of Material Blocks

2009 ◽  
Vol 9 (10) ◽  
pp. 1962-1967 ◽  
Author(s):  
A. Abbasi ◽  
B. Vosoughi Vahdat ◽  
Gh. Ebrahimi Fakhim
Author(s):  
Georgios Lymperopoulos ◽  
Panagiotis Lymperopoulos ◽  
Victoria Alikari ◽  
Chrisoula Dafogianni ◽  
Sofia Zyga ◽  
...  

2004 ◽  
Vol 126 (2) ◽  
pp. 305-309 ◽  
Author(s):  
Rafael Davalos ◽  
Boris Rubinsky

Tissue damage that is associated with the loss of cell membrane integrity should alter the bulk electrical properties of the tissue. This study shows that electrical impedance tomography (EIT) should be able to detect and image necrotic tissue inside the body due to the permeabilization of the membrane to ions. Cryosurgery, a minimally invasive surgical procedure that uses freezing to destroy undesirable tissue, was used to investigate the hypothesis. Experimental results with liver tissue demonstrate that cell damage during freezing results in substantial changes in tissue electrical properties. Two-dimensional EIT simulations of liver cryosurgery, which employ the experimental data, demonstrate the feasibility of this application.


2020 ◽  
Vol 10 (2) ◽  
pp. 125
Author(s):  
Endarko Endarko ◽  
Ari Bangkit Sanjaya Umbu

Electrical impedance tomography is a non-invasive imaging modality that uses the electrical conductivity distribution to reconstruct images based on potential measurements from the object's surface. The proposed study was to design and fabricate a low-cost and simple reconstruction method for 3D electrical impedance tomography imaging. In this study, we have been successfully developed 3 Dimensional Electrical Impedance Tomography (3D-EIT) system using 16 copper electrodes (Cu) to detect and reconstruct the presence of objects in the Phantom. 3D-EIT was developed using Phantom as a test object with PVC pipe material, with an inner diameter of 7.2 cm and a height of 5.4 cm. Electrodes were arranged in two rings, with each ring having eight electrodes arranged in a planar line. Furthermore, the Gauss-Newton algorithm and Laplace prior regularization were used to image reconstruction of objects inside the Phantom using voltage measurement produced from sequential pairs of neighboring electrodes. The voltage is obtained from the injection of a constant current of 1 mA at 20 kHz into the system's electrode pairs. The objects used in this research are PVC pipe, solid aluminum, PVC pipes filled with wax glue, and copper trusses. The results obtained show that the reconstruction results can provide information about the position, the electrical properties, and the shape of real objects. Finally, the system can detect the location, height, and electrical properties of objects for all variations of angle and height variations.


2016 ◽  
Vol 16 (3) ◽  
pp. 309-323 ◽  
Author(s):  
Sumit Gupta ◽  
Jesus G Gonzalez ◽  
Kenneth J Loh

The objective of this study was to design a multifunctional cement composite that could not only bear loads but also possessed electromechanical properties that are sensitive to damage. A mainstream approach is to disperse large quantities of conductive additives in the cement matrix, which can be costly, involve complex procedures, difficult to scale-up, and degrade concrete’s inherent mechanical properties. Instead, this research proposes a new method to design multifunctional and self-sensing concrete, which is achieved by altering the cement–aggregate interface using conductive, nano-engineered coatings. Here, a carbon nanotube–based ink solution was sprayed onto the surfaces of aggregates and then dried to form electrically conductive, thin film-coated aggregates. Then, the film-coated aggregates were used as is for casting concrete specimens. It was demonstrated experimentally that this procedure yielded concrete specimens that were not only conductive but also had electrical properties that varied in response to applied physical damage. An electrical impedance tomography algorithm was also implemented and used for estimating their spatial resistivity distributions. Since the electrical properties at every location of the film-enhanced concrete were sensitive to damage, electrical impedance tomography was able to produce electrical resistivity maps that indicated the locations and severities of damage. Multiple concrete cylinder, plate, and beam specimens were cast and tested for validating the self-sensing properties of film-enhanced concrete and the spatial damage detection capabilities of the electrical impedance tomography algorithm.


Author(s):  
Bruno Furtado de Moura ◽  
francisco sepulveda ◽  
Jorge Luis Jorge Acevedo ◽  
Wellington Betencurte da Silva ◽  
Rogerio Ramos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document