Tatla Lake Metamorphic Complex: An Eocene Metamorphic Core Complex on the southwestern edge of the Intermontane Belt of British Columbia

Tectonics ◽  
1988 ◽  
Vol 7 (6) ◽  
pp. 1141-1166 ◽  
Author(s):  
R. M. Friedman ◽  
Richard Lee Armstrong
1992 ◽  
Vol 29 (5) ◽  
pp. 972-983 ◽  
Author(s):  
R. M. Friedman

The Tatla Lake metamorphic complex (TLMC) is a metamorphic core complex located along the western edge of the Intermontane Belt in southwestern interior British Columbia. Low- to moderate-angle normal faults separate lower plate greenschist- and amphibolite-grade, highly strained, commonly mylonitic rocks from unstrained to weakly deformed strata of the upper plate. The lower plate is divided into a core of granoblastic gneiss and migmatitic tonalite and an overlying, 1–2.5+ km thick mylonitic package called the ductilely sheared assemblage (DSA). Amphibolite-grade metamorphism of the gneissic core (Mc) largely accompanied the development and folding of gneissic layering (ca. 107–79 Ma). Eocene (ca. 55–47 Ma) fabric and mineral assemblages in the DSA (Ms) obscure any earlier history. Three metamorphic zones are observed within southern DSA metapelites with increasing structural depth: chlorite–biotite, garnet–staurolite, and garnet–staurolite–kyanite–sillimanite. The middle zone is about 300 m thick; the latter zone is now about 4 km below low-grade upper plate rocks, indicating late- or post-Ds metamorphic omission. DSA P–T conditions are calculated with the garnet–biotite thermometer and garnet–Al2SiO5–quartz–plagioclase (GASP) and total Al in hornblende barometers. Southern DSA metapelites record Eocene Ms conditions of 480–619 °C (± 50 °C), generally increasing with depth. One sample gave a calculated P–T of 0.72 ± 0.15 GPa and 500 ± 50 °C. P–T data from this area suggest that up to 10 km of structural section may be missing. Zoned garnet (pre-Ds) core to rim GASP pressures of 0.70–0.36 ± 0.15 GPa, for an outcrop-sized pelitic xenolith within a Late Cretaceous tonalitic body (U–Pb: 71 Ma) in the northwestern DSA, record its ascent during pluton emplacement and subsequent Eocene tectonic uplift. A total Al in hornblende crystallization pressure of 0.54 ± 0.1 GPa was calculated for the surrounding body. Biotite and hornblende K–Ar dates of 53.4–45.6 Ma for DSA and gneissic core rocks record cooling of the lower plate through the 530–280 °C (± 40 °C) interval. Mc metamorphism in the gneissic core is thought to have developed in response to crustal thickening and compression, beneath a regional mid-Cretaceous thrust belt. Characteristics of Eocene Ms metamorphism in the DSA, such as truncated and thinned metamorphic zones, are consistent with development during extensional tectonic exhumation of the lower plate.


2005 ◽  
Vol 42 (1) ◽  
pp. 49-66 ◽  
Author(s):  
Jason D McClaughry ◽  
David R Gaylord

The middle Eocene White Lake and Skaha formations in the White Lake Basin, British Columbia record the sedimentary and volcanic infilling of a supradetachment basin that developed during the latter stages of Shuswap metamorphic core complex exhumation. The 1.1-km-thick White Lake Formation is characterized by volcanogenic sediment gravity flow, fluvial, and sheetflood facies interbedded with volcanic deposits. Facies relations suggest White Lake strata accumulated on coalesced, west-sloping alluvial fans that drained an active volcanic center. The overlying 0.3-km-thick Skaha Formation records increased tectonism and mass-wasting. Pervasively shattered Skaha avalanche, slide, and sheetflood deposits accumulated on alluvial fans, shed from hanging-wall and footwall sources exposed along the Okanagan Valley fault. Clast compositions of the White Lake and Skaha formations record alluvial and tectonic stripping that locally eliminated hanging-wall blocks. Mylonite clasts in upper Skaha beds imply significant Okanagan Valley fault footwall uplift during the middle Eocene and syntectonic erosion of the Shuswap metamorphic core complex. The syntectonic sedimentary record preserved within the White Lake Basin elucidates the relations and timing between core complex exhumation and extensional tectonism in this region. The White Lake and Skaha formations are the apparent age equivalent of the Klondike Mountain Formation of northern Washington (USA.). White Lake Basin strata, however, are more complexly interstratified, post-depositionally disrupted, and contain a more complete record of core complex unroofing. Variations in the spatial distributions and textural and compositional character of middle Eocene strata in this area underscore the need to exercise care when developing regional-scale sedimentary–tectonic–volcanic models.


2017 ◽  
Vol 34 (1) ◽  
pp. 45 ◽  
Author(s):  
Elizard González-Becuar ◽  
Efrén Pérez-Segura ◽  
Ricardo Vega-Granillo ◽  
Luigi Solari ◽  
Carlos Manuel González-León ◽  
...  

Plutonic rocks of the Puerta del Sol area, in central Sonora, represent the extension to the south of the El Jaralito batholith, and are part of the footwall of the Sierra Mazatán metamorphic core complex, whose low-angle detachment fault bounds the outcrops of plutonic rocks to the west. Plutons in the area record the magmatic evolution of the Laramide arc and the Oligo-Miocene syn-extensional plutonism in Sonora. The basement of the area is composed by the ca. 1.68 Ga El Palofierral orthogneiss that is part of the Caborca block. The Laramide plutons include the El Gato diorite (71.29 ± 0.45 Ma, U-Pb), the El Pajarito granite (67.9 ± 0.43 Ma, U-Pb), and the Puerta del Sol granodiorite (49.1 ± 0.46 Ma, U-Pb). The younger El Oquimonis granite (41.78 ± 0.32 Ma, U-Pb) is considered part of the scarce magmatism that in Sonora records a transition to the Sierra Madre Occidental magmatic event. The syn-extensional plutons are the El Garambullo gabbro (19.83 ± 0.18 Ma, U-Pb) and the Las Mayitas granodiorite (19.2 ± 1.2 Ma, K-Ar). A migmatitic event that affected the El Palofierral orthogneiss, El Gato diorite, and El Pajarito granite between ca. 68 and 59 Ma might be related to the emplacement of the El Pajarito granite. The plutons are metaluminous to slightly peraluminous, with the exception of El Oquimonis granite, which is a peraluminous two-mica, garnet-bearing granite. They are mostly high-K calc-alkaline with nearly uniform chondrite-normalized REE and primitive-mantle normalized multielemental patterns that are characteristic of continental margin arcs and resemble patterns reported for other Laramide granites of Sonora. The Laramide and syn-extensional plutons also have Sr, Nd and Pb isotopic ratios that plot within the fields reported for Laramide granites emplaced in the Caborca terrane in northwestern and central Sonora. Nevertheless, and despite their geochemical affinity to continental magmatic arcs, the El Garambullo gabbro and Las Mayitas granodiorite are syn-extensional plutons that were emplaced at ca. 20 Ma during development of the Sierra Mazatán metamorphic core complex. The 40Ar/39Ar and K-Ar ages obtained for the El Palofierral orthogneiss, the Puerta del Sol granodiorite, the El Oquimonis granite, and the El Garambullo gabbro range from 26.3 ± 0.6 to 17.4 ± 1.0 Ma and are considered cooling ages associated with the exhumation of the metamorphic core complex.


Sign in / Sign up

Export Citation Format

Share Document