Action spectra of phenylalanine ammonia-lyase and chalcone synthase expression in carrot cells in suspension

1994 ◽  
Vol 91 (3) ◽  
pp. 517-521 ◽  
Author(s):  
Junko Takeda ◽  
Ichiro Obi ◽  
Kazuichi Yoshida
1986 ◽  
Vol 6 (5) ◽  
pp. 1615-1623
Author(s):  
J N Bell ◽  
T B Ryder ◽  
V P Wingate ◽  
J A Bailey ◽  
C J Lamb

Phenylalanine ammonia-lyase and chalcone synthase catalyze the first reaction of phenylpropanoid biosynthesis and the first reaction of a branch pathway specific for flavonoid-isoflavonoid biosynthesis, respectively. These enzymes are key control elements in the synthesis of kievitone, phaseollin, and related isoflavonoid-derived phytoalexins. RNA blot hybridization with 32P-labeled cDNA sequences was used to demonstrate marked accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs in excision-wounded hypocotyls of Phaseolus vulgaris L. (dwarf French bean) and during race-cultivar-specific interactions between hypocotyls of P. vulgaris and the partially biotrophic fungus Colletotrichum lindemuthianum, the causal agent of anthracnose. In an incompatible interaction (host resistant), early concomitant accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs, localized mainly but not entirely in tissue adjacent to the site of infection, was observed prior to the onset of phytoalexin accumulation and expression of localized, hypersensitive resistance. In contrast, in a compatible interaction (host susceptible) there was no early accumulation of these transcripts; instead, there was a delayed widespread response associated with phytoalexin accumulation during attempted lesion limitation. Two-dimensional gel electrophoresis of [35S]methionine-labeled polypeptides synthesized in vitro by translation of isolated polysomal RNA demonstrated stimulation of the synthesis of characteristic sets of phenylalanine ammonia-lyase and chalcone synthase isopolypeptides in directly infected tissue and distant, hitherto uninfected tissue in both compatible and incompatible interactions. Our data show that specific accumulation of plant defense gene transcripts is a key early component in the sequence of events leading to expression of defense responses in wounded tissue and in infected tissue during race-cultivar-specific interactions and that an elicitation signal is transmitted intercellularly in response to infection.


2003 ◽  
Vol 15 (3) ◽  
pp. 129-134 ◽  
Author(s):  
Ângela Diniz Campos ◽  
Alfredo Gui Ferreira ◽  
Magdolna Maria Vozári Hampe ◽  
Irajá Ferreira Antunes ◽  
Nely Brancão ◽  
...  

The activities of the enzymes chalcone synthase (CHS) and phenylalanine ammonia-lyase (PAL) were measured in leaf extracts obtained from four cultivars of the common bean (AB 136, Rio Tibagi, Carioca and Macanudo). Two stages of plant development were examined: plantlets (V2) and the onset of blooming (R6). Initially, the plants were either treated with salicylic acid or inoculated with the delta race of Colletotrichum lindemuthianum (inductive fungus) and after three days they were evaluated for enzyme activity. Afterwards, all plants were inoculated (challenged) with the virulent pathotype 33/95 of C. lindemuthianum except for the water control. Five days later, the activities of PAL and CHS were evaluated. There were significant changes in the activities of both enzymes three days after treatment with salicylic acid or inductive fungus when compared to the control. Five days after inoculation with with the virulent pathotype 33/95 of C. lindemuthianum CHS activity in the Macanudo was similar to control plants that were not treated with salicylic acid or the inductive fungus but inoculated with 33/95 C. lindemuthianum. The increase in enzyme activity after challenge with 33/95 C. lindemuthianum was greatest for the salicylic acid treatment in the cultivar AB 136, followed by Rio Tibagi and Carioca.


Planta ◽  
1995 ◽  
Vol 196 (4) ◽  
pp. 712-719 ◽  
Author(s):  
H. Sch�pker ◽  
M. Kneisel ◽  
L. Beerhues ◽  
H. Robenek ◽  
R. Wiermann

Sign in / Sign up

Export Citation Format

Share Document