suspension cultures
Recently Published Documents


TOTAL DOCUMENTS

3300
(FIVE YEARS 137)

H-INDEX

86
(FIVE YEARS 4)

2022 ◽  
Vol 9 (1) ◽  
pp. 70-75
Author(s):  
Pham Thi My Tram ◽  
Ngo Ke Suong ◽  
Le Thi Thuy Tien

Plant cell cultures provide an alternative means for producing secondary compounds in food, cosmetic and pharmaceutical industries. Ehretia asperula Zollinger & Moritzi is used as a traditional medicine for the treatment of liver detoxification, ulcers, tumors, inflammation and enhancing the body's resistance in Vietnam. The study was carried out to select suitable callus line for cell suspension cultures of E. asperula Zollinger & Moritzi and investigate the effects of inoculum size, rotation speed and naphthalene acetic acid (NAA) on the proliferation of cell suspension cultures. In addition, the influence of light intensity on the growth and rosmarinic acid (RA) biosynthesis of cell suspension was also surveyed. After 4 weeks of culture, the white to pale yellow friable callus expanded significantly with a fresh weight (FW) of 0.788 g and a high RA content of 2.062 mg/g FW. An appropriate medium for cell proliferation was the liquid B5 medium, which contained 30 g/l glucose, 0.1 mg/l benzyl adenine (BA) and 0.4 mg/l NAA. The results also demonstrated that a 1:20 ratio (w/v) inoculum size, darkness and rotation speed of 90 rpm were the optimal conditions for the proliferation and RA accumulation to 188.217 mg/l in 4 weeks of culture. These findings showed that E. asperula Zollinger & Moritzi cell suspension cultures could be a potential alternative approach for RA production in vitro.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sakari Välimäki ◽  
Teresa Hazubska-Przybył ◽  
Ewelina Ratajczak ◽  
Mikko Tikkinen ◽  
Saila Varis ◽  
...  

Somatic embryogenesis is being piloted for the commercial production of genetically improved Norway spruce (Picea abies L. Karst) forest regeneration material in Finland. The main challenge to making the process commercially relevant is the dependence on time-consuming and highly skilled manual labor. Automation and scaling up are needed to improve cost-effectiveness. Moving from the proliferation of embryogenic tissue on semisolid media to suspension cultures could improve process scalability. In a series of four experiments (overall, with 20 cell lines, 4–9 per experiment), the suitability of proliferation in suspension culture for Norway spruce somatic embryogenesis was evaluated based on the growth rate, indicators of stress conditions, good-quality cotyledonary embryo yield, and embling survival in a greenhouse. The proliferation rate in suspension was found equal to on semisolid media, but with a remarkable genotypic variation. Embryogenic tissue matured directly without pre-treatments from suspension onto semisolid media produced lower numbers of good-quality embryos than tissue matured from semisolid media. Rinsing the suspension-grown tissue with hormone-free liquid media before maturation improved embryo yield, bringing it closer to that of semisolid-grown tissue. Decreasing 6-benzylaminopurine and 2,4-dichlorophenoxyacetic acid concentrations in suspension proliferation media to 0.5 or 0.1 times those in semisolid media did not affect tissue growth and did not improve embryo production. The hydrogen peroxide (H2O2) content and guaiacol peroxidase activity were elevated in suspension cultures compared with semisolid medium, which had the same plant growth regulator content. In one experiment out of four, the greenhouse survival of germinants was lower when proliferation was carried out in full strength suspension than on semisolid media; in other experiments the survival rates were equal.


2021 ◽  
pp. 96-111
Author(s):  
Ashok Ahuja ◽  
Manoj Kumar Tripathi ◽  
Sushma Tiwari ◽  
Niraj Tripathi ◽  
Gyanendra Tiwari ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ann-Katrin Beuel ◽  
Natalia Jablonka ◽  
Julia Heesel ◽  
Kevin Severin ◽  
Holger Spiegel ◽  
...  

AbstractPlant secondary metabolites are widely used in the food, cosmetic and pharmaceutical industries. They can be extracted from sterile grown plant cell suspension cultures, but yields and quality strongly depend on the cultivation environment, including optimal illumination. Current shaking incubators do not allow different light wavelengths, intensities and photoperiods to be tested in parallel. We therefore developed LEDitSHAKE, a system for multiplexed customized illumination within a single shaking incubator. We used 3D printing to integrate light-emitting diode assemblies into flask housings, allowing 12 different lighting conditions (spectrum, intensity and photoperiod) to be tested simultaneously. We did a proof of principle of LEDitSHAKE using the system to optimize anthocyanin production in grapevine cell suspension cultures. The effect of 24 different light compositions on the total anthocyanin content of grapevine cell suspension cultures was determined using a Design of Experiments approach. We predicted the optimal lighting conditions for the upregulation and downregulation of 30 anthocyanins and found that short-wavelength light (blue, UV) maximized the concentration of most anthocyanins, whereas long-wavelength light (red) had the opposite effect. Therefore our results demonstrate proof of principle that the LEDitSHAKE system is suitable for the optimization of processes based on plant cell suspension cultures.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2607
Author(s):  
Ana O. Quintana-Escobar ◽  
Hugo A. Méndez-Hernández ◽  
Rosa M. Galaz-Ávalos ◽  
José M. Elizalde-Contreras ◽  
Francisco A. Reyes-Soria ◽  
...  

Coffea arabica is one of the most important crops worldwide. In vitro culture is an alternative for achieving Coffea regeneration, propagation, conservation, genetic improvement, and genome editing. The aim of this work was to identify proteins involved in auxin homeostasis by isobaric tandem mass tag (TMT) and the synchronous precursor selection (SPS)-based MS3 technology on the Orbitrap Fusion™ Tribrid mass spectrometer™ in three types of biological materials corresponding to C. arabica: plantlet leaves, calli, and suspension cultures. Proteins included in the β-oxidation of indole butyric acid and in the signaling, transport, and conjugation of indole-3-acetic acid were identified, such as the indole butyric response (IBR), the auxin binding protein (ABP), the ATP-binding cassette transporters (ABC), the Gretchen-Hagen 3 proteins (GH3), and the indole-3-acetic-leucine-resistant proteins (ILR). A more significant accumulation of proteins involved in auxin homeostasis was found in the suspension cultures vs. the plantlet, followed by callus vs. plantlet and suspension culture vs. callus, suggesting important roles of these proteins in the cell differentiation process.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1335
Author(s):  
Julia Puppin Chaves Fulber ◽  
Omar Farnós ◽  
Sascha Kiesslich ◽  
Zeyu Yang ◽  
Shantoshini Dash ◽  
...  

The ongoing COVID-19 pandemic drew global attention to infectious diseases, attracting numerous resources for development of pandemic preparedness plans and vaccine platforms—technologies with robust manufacturing processes that can quickly be pivoted to target emerging diseases. Newcastle Disease Virus (NDV) has been studied as a viral vector for human and veterinary vaccines, but its production relies heavily on embryonated chicken eggs, with very few studies producing NDV in cell culture. Here, NDV is produced in suspension Vero cells, and analytical assays (TCID50 and ddPCR) are developed to quantify infectious and total viral titer. NDV-GFP and NDV-FLS (SARS-CoV-2 full-length spike protein) constructs were adapted to replicate in Vero and HEK293 suspension cultures using serum-free media, while fine-tuning parameters such as MOI, temperature, and trypsin concentration. Shake flask productions with Vero cells resulted in infectious titers of 1.07 × 108 TCID50/mL for NDV-GFP and 1.33 × 108 TCID50/mL for NDV-FLS. Production in 1 L batch bioreactors also resulted in high titers in culture supernatants, reaching 2.37 × 108 TCID50/mL for NDV-GFP and 3.16 × 107 TCID50/mL for NDV-FLS. This shows effective NDV production in cell culture, building the basis for a scalable vectored-vaccine manufacturing process that can be applied to different targets.


2021 ◽  
Author(s):  
Marie-Angélique Sène ◽  
Yu Xia ◽  
Amine A. Kamen

Abstract The Vero cell line is the most used continuous cell line for viral vaccine manufacturing. Its anchorage-dependent use renders scaling-up challenging and operations very labor intensive which affects cost effectiveness. Thus, efforts to adapt Vero cells to suspension cultures have been invested but hurdles such as the long doubling time and low cell viability remain to be addressed. In this study, building on the recently published Vero cell line annotated genome, a functional genomics analysis of the Vero cells adapted to suspension is performed to better understand the genetic and phenotypic switches at play during the adaptation of Vero cells from anchorage-dependent to suspension cultures. Results show a downregulation of the epithelial to mesenchymal transition (EMT) pathway, highlighting the dissociation between the adaptation to suspension process and EMT. Surprisingly, an upregulation of cell adhesion components is observed, notably the CDH18 gene, the cytoskeleton pathway, and the extracellular pathway. Moreover, a downregulation of the glycolytic pathway are balanced by an upregulation of the asparagine metabolism pathway, promoting cell adaptation to nutrient deprivation. A downregulation of the adherens junctions and the folate pathways alongside with the FYN gene are possible explanations behind the currently observed low cell viability and long doubling time.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2202
Author(s):  
Ahmed Fouad ◽  
Adel E. Hegazy ◽  
Ehab Azab ◽  
Ebtihal Khojah ◽  
Tarek Kapiel

Global agricultural systems are under unprecedented pressures due to climate change. Advanced nano-engineering can help increase crop yields while ensuring sustainability. Nanotechnology improves agricultural productivity by boosting input efficiency and reducing waste. Alkaloids as one of the numerous secondary metabolites that serve variety of cellular functions essential for physiological processes. This study tests the competence of silver nanoparticles (AgNPs) in boosting alkaloids accumulation in Catharanthus roseus suspension cultures in relation to the expression of C. roseus Mitogen Activated Protein Kinase 3 (CrMPK3) and Strictosidine Synthase (STR) genes. Five concentrations (5, 10, 15, 20 and 25 mg·L−1) of AgNPs were utilized in addition to deionized water as control. Results reflected binary positive correlations among AgNPs concentration, oxidative stress indicated with increase in hydrogen peroxide and malondialdehyde contents, activities of ascorbate peroxidase and superoxide dismutase, expression of the regulatory gene CrMPK3 and the alkaloid biosynthetic gene STR as well as alkaloids accumulation. These correlations add to the growing evidence that AgNPs can trigger the accumulation of alkaloids in plant cells through a signaling pathway that involves hydrogen peroxide and MAPKs, leading to up-regulation of the biosynthetic genes, including STR gene.


Sign in / Sign up

Export Citation Format

Share Document