cell suspension
Recently Published Documents


TOTAL DOCUMENTS

3445
(FIVE YEARS 383)

H-INDEX

81
(FIVE YEARS 6)

2022 ◽  
Vol 12 (2) ◽  
pp. 648
Author(s):  
Ionut Avramia ◽  
Sonia Amariei

β-glucan extraction from spent brewer’s yeast is a long process that starts with the lysis of yeast cells, this step lasting up to 36 h and can be disadvantageous when working on a small scale. In this study, a rapid cell rupture method was selected for the lysis of spent brewer’s yeast to obtain β-glucans. Optimal parameters were determined for the lysis of a cellular suspension of spent brewer’s yeast by vortexing with glass beads. Thus, parameters such as the number of 10 min vortex cycles from 1 to 3, the concentration of cell suspension (5, 10, and 15%), and the ratio of yeast/glass beads (1:1, 1:2, and 1:3) were varied in a Box-Behnken design. A cell lysis mechanism using glass beads allows the cell to rupture and permits the removal of intracellular content. An increase in yeast suspension concentration decreased the disruption efficiency, while a proportional increase was observed with the yeast/glass beads ratio and the increasing number of vortexing cycles. The optimal parameters for cell lysis were found to be a cell suspension concentration of 5%, a ratio of yeast/glass beads of 1:2, and a vortexing cycle of 3, with a disruption efficiency of 99.8%. The β-glucan fraction extracted from the optimal sample showed characteristic absorption bands at 1370.77 and 1153.92 cm−1, the content of β-glucan being 78.53%.


Author(s):  
Abdulsamie Hanano ◽  
Edgar Perez-Matas ◽  
Mouhnad Shaban ◽  
Rosa M. Cusido ◽  
Denis J. Murphy

2022 ◽  
Vol 299 ◽  
pp. 114341
Author(s):  
Brenda R. de Camargo ◽  
Leonardo A. da Silva ◽  
Athos S. de Oliveira ◽  
Bergmann M. Ribeiro

2022 ◽  
Vol 9 (1) ◽  
pp. 70-75
Author(s):  
Pham Thi My Tram ◽  
Ngo Ke Suong ◽  
Le Thi Thuy Tien

Plant cell cultures provide an alternative means for producing secondary compounds in food, cosmetic and pharmaceutical industries. Ehretia asperula Zollinger & Moritzi is used as a traditional medicine for the treatment of liver detoxification, ulcers, tumors, inflammation and enhancing the body's resistance in Vietnam. The study was carried out to select suitable callus line for cell suspension cultures of E. asperula Zollinger & Moritzi and investigate the effects of inoculum size, rotation speed and naphthalene acetic acid (NAA) on the proliferation of cell suspension cultures. In addition, the influence of light intensity on the growth and rosmarinic acid (RA) biosynthesis of cell suspension was also surveyed. After 4 weeks of culture, the white to pale yellow friable callus expanded significantly with a fresh weight (FW) of 0.788 g and a high RA content of 2.062 mg/g FW. An appropriate medium for cell proliferation was the liquid B5 medium, which contained 30 g/l glucose, 0.1 mg/l benzyl adenine (BA) and 0.4 mg/l NAA. The results also demonstrated that a 1:20 ratio (w/v) inoculum size, darkness and rotation speed of 90 rpm were the optimal conditions for the proliferation and RA accumulation to 188.217 mg/l in 4 weeks of culture. These findings showed that E. asperula Zollinger & Moritzi cell suspension cultures could be a potential alternative approach for RA production in vitro.


Author(s):  
Katherine A. Dawson ◽  
Megan A. Mickelson ◽  
April E. Blong ◽  
Rebecca A. L. Walton

Abstract CASE DESCRIPTION A 3-year-old 27-kg female spayed American Bulldog with severe burn injuries caused by a gasoline can explosion was evaluated. CLINICAL FINDINGS The dog had extensive partial- and full-thickness burns with 50% of total body surface area affected. The burns involved the dorsum extending from the tail to approximately the 10th thoracic vertebra, left pelvic limb (involving 360° burns from the hip region to the tarsus), inguinal area bilaterally, right medial aspect of the thigh, and entire perineal region. Additional burns affected the margins of the pinnae and periocular regions, with severe corneal involvement bilaterally. TREATMENT AND OUTCOME The dog was hospitalized in the hospital’s intensive care unit for 78 days. Case management involved provision of aggressive multimodal analgesia, systemic support, and a combination of novel debridement and reconstructive techniques. Debridement was facilitated by traditional surgical techniques in combination with maggot treatment. Reconstructive surgeries involved 6 staged procedures along with the use of novel treatments including applications of widespread acellular fish (cod) skin graft and autologous skin cell suspension. CLINICAL RELEVANCE The outcome for the dog of the present report highlighted the successful use of maggot treatment and applications of acellular cod skin and autologous skin cell suspension along with aggressive systemic management and long-term multimodal analgesia with debridement and wound reconstruction for management of severe burn injuries encompassing 50% of an animal’s total body surface area.


2021 ◽  
Vol 117 (4) ◽  
pp. 1
Author(s):  
Sarieh TARIGHOLIZADEH ◽  
Rouhollah MOTAFAKKERAZAD ◽  
Morteza KOSARI-NASAB ◽  
Ali MOVAFEGHI ◽  
Sakineh MOHAMMADI ◽  
...  

<p class="042abstractstekst">The impact of combinations of plant growth regulators (PGRs) on callus culture of <em>Satureja sahendica </em>Bornm. was investigated. In nodal explants, the response of secondary metabolite production to different concentrations of PGRs was analyzed regarding the presence and absence of polyvinylpyrrolidone (PVP). The explants were cultured on MS media in presence of auxins (2,4-dichlorophenoxyacetic acid and naphthylacetic acid) and cytokinins (thidiazuron and kinetin); which were used in equal concentrations of 0.5, 1, and 2 mg l<sup>-1</sup>. The treatment of 2 mg l<sup>-1</sup> 2,4-D + 2 mg l<sup>-1 </sup>Kin (MD3) led to the highest production of total phenolics (4.303 ± 0.449 mg GAE g<sup>-1</sup>) and flavonoids (24.903 ± 7.016 mg QE g<sup>-1</sup>). Moreover, the effect of salicylic acid (SA) on the production of secondary metabolites in cell suspension culture of <em>Satureja sahendica</em> was evaluated. The cell suspension culture was established by culturing the nodal-derived friable callus in the liquid medium containing different concentrations of SA (0, 100, 150, 200 µM). An inverse relationship exists between the fresh mass and secondary metabolites contents. In addition, there was a significant difference among concentrations of SA in the production of total phenolics and flavonoid compounds. SA enhances secondary metabolites production and decreases cell fresh mass.</p>


2021 ◽  
Author(s):  
Astrid Larissa Gallegos-Ordóñez ◽  
Andrés Sánchez-Kopper ◽  
Karol Jiménez-Quesada ◽  
Giovanni Garro-Monge

Abstract Pharmaceutical use is not feasible for important medicinal compounds derived from certain plant materials, including Phyllanthus acuminatus roots, due to their low natural abundance. New technologies in non-traditional biomass generation are needed to produce these remarkable natural compounds. Therefore, this article describes a methodology for establishing Phyllanthus acuminatus plant-cell suspensions from callus cultures: An evaluation on inoculum concentration and agitation speed displayed significant changes in plant cell growth kinetics. It was determined that treatment with 2 g of inoculum in 25 mL of medium and 100 rpm agitation creates the best conditions for generating thick cell suspensions. Likewise, treatment with 2 g of inoculum and 120 rpm agitation produces the best conditions for establishing fine cell suspensions. Phytochemical comparison through high-resolution mass spectrometry of P. acuminatus roots and plant cell suspension extracts confirmed presence in the plant cell culture of multiple phyllantostatins of pharmaceutical interest. Here, we demonstrate that Phyllanthus acuminatus can be cultured in plant cell suspensions to produce secondary metabolites of medical interest – technology that could be scaled up for implementation in industrial bioprocesses.


Planta Medica ◽  
2021 ◽  
Author(s):  
Christian Carreño-Campos ◽  
Jaime I. Arevalo-Villalobos ◽  
María Luisa Villarreal ◽  
Anabel Ortiz-Caltempa ◽  
Sergio Rosales-Mendoza

AbstractCarrot (Daucus carota) cells have been used to effectively manufacture recombinant biopharmaceuticals such as cytokines, vaccines, and antibodies. We generated the carrot cell line Z4, genetically modified to produce the LTB-Syn antigen, which is a fusion protein proposed for immunotherapy against synucleinopathies. In this work, the Z4 cell suspension line was cultivated to produce the LTB-Syn protein in a 250 mL shake flask and 2 L airlift bioreactor cultures grown for 45 and 30 days, respectively. Maximum biomass was obtained on day 15 in both the airlift bioreactor (35.00 ± 0.04 g/L DW) and shake flasks (17.00 ± 0.04 g/L DW). In the bioreactor, the highest LTB-Syn protein yield (1.52 ± 0.03 µg/g FW) was obtained on day 15; while the same occurred on day 18 for shake flasks (0.92 ± 0.02 µg/g FW). LTB-Syn protein levels were analyzed by GM1-ELISA and western blot. PCR analysis confirmed the presence of the transgene in the Z4 line. The obtained data demonstrate that the carrot Z4 cell suspension line grown in airlift bioreactors shows promise for a scale-up cultivation producing an oral LTB-Syn antigen.


Sign in / Sign up

Export Citation Format

Share Document