Minimum Audible Angle and Discrimination in a 3-D Virtual Auditory Localization Task

2000 ◽  
Author(s):  
Daniel S. Gajewski ◽  
Alan D. Musicant ◽  
Robert S. Bolia ◽  
Daniel L. Hassler ◽  
Shannon M. Walker
2012 ◽  
Vol 85 (3) ◽  
pp. 417-418
Author(s):  
L.B. Shestopalova ◽  
E.A. Petropavlovskaia ◽  
N.I. Nikitin ◽  
S.Ph. Vaitulevich

1976 ◽  
Vol 43 (2) ◽  
pp. 647-653 ◽  
Author(s):  
Graeme Russell

Practice and transfer of practice in an auditory localization task were observed for three different information conditions (normal, transformed and reduced) to examine four aspects of Gibson's (1969) differentiation theory of perceptual learning and development. Support was found for the propositions that: (i) dimensions of difference, rather than prototypes, are learned; (ii) specificity is a more appropriate response measure than number of correct responses; (iii) perceptual learning will occur regardless of whether feedback is given or not; (iv) transfer of practice will be greater if dimensions of difference (as opposed to prototypes) are learned. It was also found that feedback during practice did not affect transfer. In an apparent contradiction though, specificity increased in the absence of dimensions of difference. This increase was interpreted as being associated with the detection of non-task-related information and was seen as lending support to Gibson's hypothesis that, perceptual learning is motivated by intrinsic cognitive drive and is terminated by a reduction in subjective uncertainty.


1965 ◽  
Author(s):  
Robert W. Bauer ◽  
Raymond F. Blackmer

2021 ◽  
Vol 29 ◽  
pp. 475-486
Author(s):  
Bohdan Petryshak ◽  
Illia Kachko ◽  
Mykola Maksymenko ◽  
Oles Dobosevych

BACKGROUND: Premature ventricular contraction (PVC) is among the most frequently occurring types of arrhythmias. Existing approaches for automated PVC identification suffer from a range of disadvantages related to hand-crafted features and benchmarking on datasets with a tiny sample of PVC beats. OBJECTIVE: The main objective is to address the drawbacks described above in the proposed framework, which takes a raw ECG signal as an input and localizes R peaks of the PVC beats. METHODS: Our method consists of two neural networks. First, an encoder-decoder architecture trained on PVC-rich dataset localizes the R peak of both Normal and anomalous heartbeats. Provided R peaks positions, our CardioIncNet model does the delineation of healthy versus PVC beats. RESULTS: We have performed an extensive evaluation of our pipeline with both single- and cross-dataset paradigms on three public datasets. Our approach results in over 0.99 and 0.979 F1-measure on both single- and cross-dataset paradigms for R peaks localization task and above 0.96 and 0.85 F1 score for the PVC beats classification task. CONCLUSIONS: We have shown a method that provides robust performance beyond the beats of Normal nature and clearly outperforms classical algorithms both in the case of a single and cross-dataset evaluation. We provide a Github1 repository for the reproduction of the results.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Manon Carrière ◽  
Helena Cassol ◽  
Charlène Aubinet ◽  
Rajanikant Panda ◽  
Aurore Thibaut ◽  
...  

Abstract Auditory localization (i.e. turning the head and/or the eyes towards an auditory stimulus) is often part of the clinical evaluation of patients recovering from coma. The objective of this study is to determine whether auditory localization could be considered as a new sign of minimally conscious state, using a multimodal approach. The presence of auditory localization and the clinical outcome at 2 years of follow-up were evaluated in 186 patients with severe brain injury, including 64 with unresponsive wakefulness syndrome, 28 in minimally conscious state minus, 71 in minimally conscious state plus and 23 who emerged from the minimally conscious state. Brain metabolism, functional connectivity and graph theory measures were investigated by means of 18F-fluorodeoxyglucose positron emission tomography, functional MRI and high-density electroencephalography in two subgroups of unresponsive patients, with and without auditory localization. These two subgroups were also compared to a subgroup of patients in minimally conscious state minus. Auditory localization was observed in 13% of unresponsive patients, 46% of patients in minimally conscious state minus, 62% of patients in minimally conscious state plus and 78% of patients who emerged from the minimally conscious state. The probability to observe an auditory localization increased along with the level of consciousness, and the presence of auditory localization could predict the level of consciousness. Patients with auditory localization had higher survival rates (at 2-year follow-up) than those without localization. Differences in brain function were found between unresponsive patients with and without auditory localization. Higher connectivity in unresponsive patients with auditory localization was measured between the fronto-parietal network and secondary visual areas, and in the alpha band electroencephalography network. Moreover, patients in minimally conscious state minus significantly differed from unresponsive patients without auditory localization in terms of brain metabolism and alpha network centrality, whereas no difference was found with unresponsive patients who presented auditory localization. Our multimodal findings suggest differences in brain function between unresponsive patients with and without auditory localization, which support our hypothesis that auditory localization should be considered as a new sign of minimally conscious state. Unresponsive patients showing auditory localization should therefore no longer be considered unresponsive but minimally conscious. This would have crucial consequences on these patients’ lives as it would directly impact the therapeutic orientation or end-of-life decisions usually taken based on the diagnosis.


Author(s):  
Amberkar Vittal Rao Mohanbabu ◽  
Meena Kumari Kamal Kishore ◽  
Bangalore Revanna Chandrashekar ◽  
Hoskeri Dakappa Pradeepa ◽  
Rockson Christopher ◽  
...  

AbstractThe goal of this study was to evaluate the cerebroprotective and cognition-enhancing activities of the aqueousReference or working memory and long-term memory in rodents were tested by experimental paradigms like passive avoidance (PA) and T-maze (TM), respectively. TM and Morris water maze (MWM) were used to screen putative spatial or localization task and the navigation memory-enhancing activities ofThe higher dose (20 mg/kg) of plant extract exhibited significant (p<0.01) antiamnesic activity in the PA and TM models vs. the control. In the MWM test, at probe trial,These results partly substantiate the traditional use of


Sign in / Sign up

Export Citation Format

Share Document