probe trial
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 6)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
Vol 43 ◽  
pp. 101227
Author(s):  
Piero Ruggenenti ◽  
Maria Rosa Caruso ◽  
Monica Cortinovis ◽  
Annalisa Perna ◽  
Tobia Peracchi ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Thomas Groves ◽  
Christa Corley ◽  
Stephanie D. Byrum ◽  
Antiño R. Allen

5-Fluorouracil (5-Fu) and leucovorin (LV) are often given in combination to treat colorectal cancer. 5-Fu/LV prevents cell proliferation by inhibiting thymidylate synthase, which catalyzes the conversion of deoxyuridine monophosphate to deoxythymidine monophosphate. While 5-Fu has been shown to cause cognitive impairment, the synergistic effect of 5-Fu with LV has not been fully explored. The present investigation was designed to assess how the combination of 5-Fu and LV affect cognition in a murine model. Six-month-old male mice were used in this study; 15 mice received saline injections and 15 mice received 5-Fu/LV injections. One month after treatment, the elevated plus maze, Y-maze, and Morris water maze behavioral tasks were performed. Brains were then extracted, cryosectioned, and stained for CD68 to assay microglial activation and with tomato lectin to assay the vasculature. All animals were able to locate the visible and hidden platform locations in the water maze. However, a significant impairment in spatial memory retention was observed in the probe trial after the first day of hidden-platform training (first probe trial) in animals that received 5-Fu/LV, but these animals showed spatial memory retention by day 5. There were no significant increases in inflammation as measured by CD68, but 5-Fu/LV treatment did modulate blood vessel morphology. Tandem mass tag proteomics analysis identified 6,049 proteins, 7 of which were differentially expressed with a p-value of <0.05 and a fold change of >1.5. The present data demonstrate that 5-Fu/LV increases anxiety and significantly impairs spatial memory retention.


2020 ◽  
Vol 133 (4) ◽  
pp. 852-866
Author(s):  
Gregory A. Chinn ◽  
Jennifer M. Sasaki Russell ◽  
Nicole A. Yabut ◽  
Deenu Maharjan ◽  
Jeffrey W. Sall

Background Cognitive deficits after perinatal anesthetic exposure are well established outcomes in animal models. This vulnerability is sex-dependent and associated with expression levels of the chloride transporters NKCC1 and KCC2. The hypothesis was that androgen signaling, NKCC1 function, and the age of isoflurane exposure are critical for the manifestation of anesthetic neurotoxicity in male rats. Methods Flutamide, an androgen receptor antagonist, was administered to male rats on postnatal days 2, 4, and 6 before 6 h of isoflurane on postnatal day 7 (ntotal = 26). Spatial and recognition memory were subsequently tested in adulthood. NKCC1 and KCC2 protein levels were measured from cortical lysates by Western blot on postnatal day 7 (ntotal = 20). Bumetanide, an NKCC1 antagonist, was injected immediately before isoflurane exposure (postnatal day 7) to study the effect of NKCC1 inhibition (ntotal = 48). To determine whether male rats remain vulnerable to anesthetic neurotoxicity as juveniles, postnatal day 14 animals were exposed to isoflurane and assessed as adults (ntotal = 30). Results Flutamide-treated male rats exposed to isoflurane successfully navigated the spatial (Barnes maze probe trial F[1, 151] = 78; P < 0.001; mean goal exploration ± SD, 6.4 ± 3.9 s) and recognition memory tasks (mean discrimination index ± SD, 0.09 ± 0.14; P = 0.003), unlike isoflurane-exposed controls. Flutamide changed expression patterns of NKCC1 (mean density ± SD: control, 1.49 ± 0.69; flutamide, 0.47 ± 0.11; P < 0.001) and KCC2 (median density [25th percentile, 75th percentile]: control, 0.23 [0.13, 0.49]; flutamide, 1.47 [1.18,1.62]; P < 0.001). Inhibiting NKCC1 with bumetanide was protective for spatial memory (probe trial F[1, 162] = 6.6; P = 0.011; mean goal time, 4.6 [7.4] s). Delaying isoflurane exposure until postnatal day 14 in males preserved spatial memory (probe trial F[1, 140] = 28; P < 0.001; mean goal time, 6.1 [7.0] s). Conclusions Vulnerability to isoflurane neurotoxicity is abolished by blocking the androgen receptor, disrupting the function of NKCC1, or delaying the time of exposure to at least 2 weeks of age in male rats. These results support a dynamic role for androgens and chloride transporter proteins in perinatal anesthetic neurotoxicity. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


SLEEP ◽  
2019 ◽  
Author(s):  
Mackenzie C Gamble ◽  
Fumi Katsuki ◽  
John G McCoy ◽  
Robert E Strecker ◽  
James Timothy McKenna

Abstract Insomnia-related sleep disruption can contribute to impaired learning and memory. Treatment of insomnia should ideally improve the sleep profile while minimally affecting mnemonic function, yet many hypnotic drugs (e.g. benzodiazepines) are known to impair memory. Here, we used a rat model of insomnia to determine whether the novel hypnotic drug DORA-22, a dual orexin receptor antagonist, improves mild stress-induced insomnia with minimal effect on memory. Animals were first trained to remember the location of a hidden platform (acquisition) in the Morris Water Maze and then administered DORA-22 (10, 30, or 100 mg/kg doses) or vehicle control. Animals were then subjected to a rodent insomnia model involving two exposures to dirty cages over a 6-hr time period (at time points 0 and 3 hr), followed immediately by a probe trial in which memory of the water maze platform location was evaluated. DORA-22 treatment improved the insomnia-related sleep disruption—wake was attenuated and NREM sleep was normalized. REM sleep amounts were enhanced compared with vehicle treatment for one dose (30 mg/kg). In the first hour of insomnia model exposure, DORA-22 promoted the number and average duration of NREM sleep spindles, which have been previously proposed to play a role in memory consolidation (all doses). Water maze measures revealed probe trial performance improvement for select doses of DORA-22, including increased time spent in the platform quadrant (10 and 30 mg/kg) and time spent in platform location and number of platform crossings (10 mg/kg only). In conclusion, DORA-22 treatment improved insomnia-related sleep disruption and memory consolidation deficits.


Pharmacia ◽  
2019 ◽  
Vol 66 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Illya Podolsky ◽  
Sergiy Shtrygol’

The object of the present study, 2-methyl-3-(phenylaminomethyl)-1H-quinolin-4-one (Atristamine), has been deeply studied as a promising antidepressant with the unique spectrum of additional neuropharmacological properties. Previously, the memory-enhancing effects of Atristamine have already been studied in the passive-avoidance test after scopolamine-induced amnesia in mice. Thus, the study of the effects of Atristamine on the spatial learning and memory in the Morris water maze under physiological conditions was the next logical step of our research. According to the results obtained, Atristamine (100 mg/kg) has almost the same effect on the main markers of the memory-enhancing activity (the escape latency and distance moved) as Piracetam (300 mg/kg) and Phenibut (20 mg/kg) chosen as the well-studied and widely-used memory enhancers. The escape latency decreased in the Atristamine group by 3.2 times compared to the vehicle control group, whereas Piracetam and Phenibut caused a significant reduction of this indicator by 4.3 and 3.7 times, respectively. Moreover, the rats from the Atristamine group swam 5.1 times shorter distance to the platform in the probe trial compared to animals from the vehicle control group. The distance moved was 3-fold shorter in the Piracetam group and decreased by 5.2 times in the Phenibut group. All drugs used in this study caused considerable changes of inter-quadrant preferences of animals. Based on the analysis of the inter-quadrant behaviour of rats, it has been found that there are considerable differences in search strategies associated, probably, with distinct mechanisms of the memory and learning enhancing action of the drugs used.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
S. Careena ◽  
D. Sani ◽  
S. N. Tan ◽  
C. W. Lim ◽  
Shariful Hassan ◽  
...  

Cognitive disability is a common feature associated with a variety of neurological conditions including Alzheimer’s Disease (AD), Parkinson’s Disease (PD), brain injury, and stroke. Emerging evidence has demonstrated that neuroinflammation plays an important role in the development of cognitive impairment. Current available therapies are relatively ineffective in treating or preventing cognitive disabilities, thus representing an important, unfulfilled medical need. Hence, developing potential treatment is one of the major areas of research interest. Edible bird’s nests (EBN) are nests formed by swiftlet’s saliva containing sialic acid, which is believed to improve brain function. This present study was embarked upon to evaluate the learning and memory enhancing potential effect of EBN by using Morris water maze test in a Wistar rat model of LPS-induced neuroinflammation. LPS elicited cognitive impairment in the rats by significantly increasing the escape latency while decreasing the number of entries in the probe trial, which are coupled with increased production of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and oxidative markers (ROS and TBARS) in the hippocampus. Treatment with EBN (125 mg/kg, 250 mg/kg, and 500 mg/kg; p.o.) effectively reversed the effect of LPS on escape latency and probe trial and, in addition, inhibited the LPS-induced upregulation of proinflammatory cytokines and oxidative markers. These findings are suggestive that there is existence of neuroprotective effect contained inside the edible bird’s nest.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 711
Author(s):  
Suzanne O. Nolan ◽  
Joaquin N. Lugo

Background: Loss of FMR1 is associated with Fragile X syndrome, amongst the most prevalent inherited intellectual disability. Despite extensive research in this area, previous studies have failed to detect consistent evidence of cognitive impairments in the Morris water maze (MWM) task in the Fmr1 knockout (KO) mouse. However, few studies have examined cognitive flexibility in a reversal form of the MWM task, which may illuminate subtle learning deficits. Methods: Adult male Fmr1 wildtype (WT) and KO mice were bred and tested in the MWM reversal paradigm. The testing paradigm consisted of two blocks per day, with 4 trials per block to locate a hidden platform. After the last trials on the fourth day of testing, the animals were given a probe trial with the platform removed. The following week, the location of the platform was switched to the opposite quadrant and the animals received 2 more days of testing, with 4 blocks in total. Results: As expected, Fmr1 KO mice did not display a learning deficit during the acquisition phase, Fgenotype (1, 24) = 0.034, p = 0.854, and performed similarly on the probe trial, Fgenotype (1, 23) = 0.024, p = 0.877. However, during the reversal phase of learning, Fmr1 KO mice showed deficits in their ability to learn the new location of the platform, Fgenotype (1, 23) = 3.93, p = 0.059. Further independent samples t-testing revealed that KO animals displayed significantly higher latency to reach the hidden platform during the third trial, t(23) = -2.96, p < 0.01. Conclusions: While previous studies have not demonstrated deficits in spatial memory in the Fmr1 KO model, it is possible that the acquisition phase of the task is less sensitive to deficits in learning. Future studies using this model to evaluate therapeutic interventions should consider utilizing the MWM reversal paradigm.


2018 ◽  
Vol 96 (2) ◽  
pp. 128-136 ◽  
Author(s):  
Mauro Ceccanti ◽  
Giovanna Coriale ◽  
Derek A. Hamilton ◽  
Valentina Carito ◽  
Roberto Coccurello ◽  
...  

The present study was aimed at examining spatial learning and memory, in 33 men and 12 women with alcohol use disorder (AUD) undergoing ethanol detoxification, by using a virtual Morris task. As controls, we recruited 29 men and 10 women among episodic drinkers without a history of alcohol addiction or alcohol-related diseases. Elevated latency to the first movement in all trials was observed only in AUD persons; furthermore, control women had longer latencies compared with control men. Increased time spent to reach the hidden platform in the learning phase was found for women of both groups compared with men, in particular during trial 3. As predicted, AUD persons (more evident in men) spent less time in the target quadrant during the probe trial; however, AUD women had longer latencies to reach the platform in the visible condition during trials 6 and 7 that resulted in a greater distance moved. As for the probe trial, men of both groups showed increased virtual locomotion compared with the women of both groups. The present investigation confirms and extends previous studies showing (i) different gender responses in spatial learning tasks, (ii) some alterations due to alcohol addiction in virtual spatial learning, and (iii) differences between AUD men and AUD women in spatial-behaviour-related paradigms.


2017 ◽  
Author(s):  
Lester Maxwell Gallivan ◽  
Neil Schmitzer-Torbert

The Morris Water Maze (MWM) is a standard task for assessing hippocampal-dependent learning and memory, but the cost of commercial versions of the task may be prohibitive for some undergraduate research projects. We describe the construction of a low-cost MWM for use with rats, and demonstrate the effectiveness of the MWM in a study of the effect of diet-induced obesity on cognitive function in rats. Previous studies have described an impairment in MWM performance in rats fed a high-fat diet combined with streptozotocin injection (to model Type 2 diabetes). We attempted to replicate this finding, and to test the ability of a novel anti-inflammatory treatment to reduce cognitive deficits in the diabetic model. Across five days of hidden-platform training, rats in all groups (normal pellet diet vs. high-fat diet, vehicle vs. treatment) improved on the water maze at similar rates. On a 30-second probe trial, each group showed a preference for the target quadrant used during training. On the probe trial, rats in the high-fat diet group receiving vehicle injections performed significantly better than rats on a normal pellet diet receiving vehicle injections, or on a high-fat diet receiving treatment. These results did not replicate previous findings that a high-fat diet combined with streptozotocin injections produces deficits in the water maze. However, the results did validate the effectiveness of a low-cost water maze constructed from commonly available materials for hidden platform water maze training, which we expect may be of use to other undergraduate researchers interested in learning and memory.


Sign in / Sign up

Export Citation Format

Share Document