Clever Sys behavior recognition technology and home cage behavior analysis

2011 ◽  
Author(s):  
V. Kobla ◽  
Y. Liang
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wei Zhan ◽  
Yafeng Zou ◽  
Zhangzhang He ◽  
Zhiliang Zhang

Statistical analysis of Bactrocera grooming behavior is important for pest control and human health. Based on DeepLabCut, this study proposes a noninvasive and effective method to track the key points of Bactrocera minax and to detect and analyze its grooming behavior. The results are analyzed and calculated automatically by a computer program. Traditional movement tracking methods are invasive; for instance, the use of artificial pheromone may affect the behavior of Bactrocera minax, thus directly affecting the accuracy and reliability of experimental results. Traditional research studies mainly rely on manual work for behavior analysis and statistics. Researchers need to play the video frame by frame and record the time interval of each grooming behavior manually, which is time-consuming, laborious, and inaccurate. So the advantages of automated analysis are obvious. Using the method proposed in this paper, the image data of 94538 frames from 5 adult Bactrocera were analyzed and 14 key points were tracked. The overall tracking accuracy was as high as 96.7%. In the behavior analysis and statistics, the average accuracy rate of the five grooming behavior was all above 96%, and the accuracy rate of the remaining two grooming behavior was over 87%. The experimental results show that the automatic noninvasive method designed in this paper can track many key points of Bactrocera minax with high accuracy and ensure the accuracy of insect behavior recognition and analysis, which greatly reduces the manual observation time and provides a new method for key points tracking and behavior recognition of related insects.


Author(s):  
Xi Chen ◽  
Hao Zhai ◽  
Danqian Liu ◽  
Weifu Li ◽  
Chaoyue Ding ◽  
...  

Biologists often need to handle numerous video-based home-cage animal behavior analysis tasks that require massive workloads. Therefore, we develop an AI-based multi-species tracking and segmentation system, SiamBOMB, for real-time and automatic home-cage animal behavioral analysis. In this system, a background-enhanced Siamese-based network with replaceable modular design ensures the flexibility and generalizability of the system, and a user-friendly interface makes it convenient to use for biologists. This real-time AI system will effectively reduce the burden on biologists.


2016 ◽  
Vol 86 (1-2) ◽  
pp. 36-47 ◽  
Author(s):  
Imen Dridi ◽  
Nidhal Soualeh ◽  
Torsten Bohn ◽  
Rachid Soulimani ◽  
Jaouad Bouayed

Abstract.This study examined whether perinatal exposure to polluted eels (Anguilla anguilla L.) induces changes in the locomotor activity of offspring mice across lifespan (post-natal days (PNDs) 47 – 329), using the open field and the home cage activity tests. Dams were exposed during gestation and lactation, through diets enriched in eels naturally contaminated with pollutants including PCBs. Analysis of the eel muscle focused on the six non-dioxin-like (NDL) indicator PCBs (Σ6 NDL-PCBs: 28, 52, 101, 138, 153 and 180). Four groups of dams (n = 10 per group) received either a standard diet without eels or eels (0.8 mg/kg/day) containing 85, 216, or 400 ng/kg/day of ϵ6 NDL-PCBs. The open field test showed that early-life exposure to polluted eels increased locomotion in female offspring of exposed dams but not in males, compared to controls. This hyperlocomotion appeared later in life, at PNDs 195 and 329 (up to 32 % increase, p < 0.05). In addition, overactivity was observed in the home cage test at PND 305: exposed offspring females showed a faster overall locomotion speed (3.6 – 4.2 cm/s) than controls (2.9 cm/s, p <0.05); again, males remained unaffected. Covered distances in the home cage test were only elevated significantly in offspring females exposed to highest PCB concentrations (3411 ± 590 cm vs. 1377 ± 114 cm, p < 0.001). These results suggest that early-life exposure to polluted eels containing dietary contaminants including PCBs caused late, persistent and gender-dependent neurobehavioral hyperactive effects in offspring mice. Furthermore, female hyperactivity was associated with a significant inhibition of acetylcholinesterase activity in the hippocampus and the prefrontal cortex.


1988 ◽  
Vol 33 (3) ◽  
pp. 271-271
Author(s):  
Cyril M. Franks

2018 ◽  
Vol 18 (2) ◽  
pp. 117-118 ◽  
Author(s):  
Anita Li ◽  
Amanda Mahoney ◽  
Alan Poling

Sign in / Sign up

Export Citation Format

Share Document