Effects of cognitive distraction on checking traffic conditions for changing lanes

2009 ◽  
Author(s):  
Huiping Zhou ◽  
Makoto Itoh ◽  
Toshiyuki Inagaki
Author(s):  
Huiping Zhou ◽  
Makoto Itoh ◽  
Toshiyuki Inagaki

This paper aimed to reveal effects of cognitively distracting activity on checking traffic condition before changing lanes. We conducted an experiment to investigate driver behavior to change lanes under two conditions: only a driving task and an additional cognitive task. It was revealed that the decrease and delay on checking traffic occurred continually during a long time period before executing lane changes, not just temporarily. The result showed that distraction might contribute to the effects. It was also suggested that cognitive distraction may degrade the perceptual capability in situation awareness. A necessary was demonstrated to give support functions, which aid a driver enhancing situation awareness and attract driver's attention from distractions, in order to prevent accidents in lane changes.


Author(s):  
Rajesh Kumar Gupta ◽  
L. N. Padhy ◽  
Sanjay Kumar Padhi

Traffic congestion on road networks is one of the most significant problems that is faced in almost all urban areas. Driving under traffic congestion compels frequent idling, acceleration, and braking, which increase energy consumption and wear and tear on vehicles. By efficiently maneuvering vehicles, traffic flow can be improved. An Adaptive Cruise Control (ACC) system in a car automatically detects its leading vehicle and adjusts the headway by using both the throttle and the brake. Conventional ACC systems are not suitable in congested traffic conditions due to their response delay.  For this purpose, development of smart technologies that contribute to improved traffic flow, throughput and safety is needed. In today’s traffic, to achieve the safe inter-vehicle distance, improve safety, avoid congestion and the limited human perception of traffic conditions and human reaction characteristics constrains should be analyzed. In addition, erroneous human driving conditions may generate shockwaves in addition which causes traffic flow instabilities. In this paper to achieve inter-vehicle distance and improved throughput, we consider Cooperative Adaptive Cruise Control (CACC) system. CACC is then implemented in Smart Driving System. For better Performance, wireless communication is used to exchange Information of individual vehicle. By introducing vehicle to vehicle (V2V) communication and vehicle to roadside infrastructure (V2R) communications, the vehicle gets information not only from its previous and following vehicle but also from the vehicles in front of the previous Vehicle and following vehicle. This enables a vehicle to follow its predecessor at a closer distance under tighter control.


2015 ◽  
Vol 4 (3) ◽  
pp. 34-42
Author(s):  
T. Sri Lakshmi Sowmya ◽  
◽  
A. Ramesh ◽  
B.N.M. Rao ◽  
M. Kumar ◽  
...  

Author(s):  
Zakhid A. Godzhayev ◽  
Teymur Z. Godzhayev ◽  
Vladimir A. Korolyash ◽  
Ol’ga Yu. Solov’yeva

The article considers conditions for safe operation of low-tonnage road trains with overall trailers, namely universal platforms with a load capacity of up to 3 tons, capable of transporting agricultural machines, mini-factories and other equipment, as well as tourist houses. Transportation of such trailers on wheels is associated with high risks arising at small turning radii and emergency braking. (Research purpose) The research purpose is in improving the safety of operation and maneuverability of agricultural low-tonnage road trains operating in difficult road and terrain conditions of agricultural production. (Materials and methods) Authors have analyzed the results of research and experiments on the safe operation of low-tonnage road trains with trailers weighing up to 1 ton. The authors developed and tested on the basis of VIM and the Volga State Technical University a mechanical coupling device with a flexible connection that increases the handling and maneuverability of the trailer. (Results and discussion) The authors determined that the critical turning radii depending on the speed of a low-tonnage road train in different road conditions and different loading of the trailer when driving in front and rear for a conventional single-axle trailer with a load capacity of 1.5; 2; 2.5; 3 tons. It was found that the maneuverability is largely provided by the additional force in the cable, so authors recommend using a cable with a diameter of at least 9 mm. (Conclusion) Further research will make it possible to determine the critical indicators of safe operation of a low-tonnage road train with a load capacity of up to 3.5 tons: safe speed when passing critical turns, emergency braking and reversing.


2020 ◽  
Vol 53 (2) ◽  
pp. 13850-13854
Author(s):  
P. Polverino ◽  
I. Arsie ◽  
C. Pianese

Sign in / Sign up

Export Citation Format

Share Document