Analyze Traffic Conditions and Events with Sound Processing

Author(s):  
Anuntapat Anuntachai ◽  
Kittituch Pavaranchanakul
Author(s):  
Rajesh Kumar Gupta ◽  
L. N. Padhy ◽  
Sanjay Kumar Padhi

Traffic congestion on road networks is one of the most significant problems that is faced in almost all urban areas. Driving under traffic congestion compels frequent idling, acceleration, and braking, which increase energy consumption and wear and tear on vehicles. By efficiently maneuvering vehicles, traffic flow can be improved. An Adaptive Cruise Control (ACC) system in a car automatically detects its leading vehicle and adjusts the headway by using both the throttle and the brake. Conventional ACC systems are not suitable in congested traffic conditions due to their response delay.  For this purpose, development of smart technologies that contribute to improved traffic flow, throughput and safety is needed. In today’s traffic, to achieve the safe inter-vehicle distance, improve safety, avoid congestion and the limited human perception of traffic conditions and human reaction characteristics constrains should be analyzed. In addition, erroneous human driving conditions may generate shockwaves in addition which causes traffic flow instabilities. In this paper to achieve inter-vehicle distance and improved throughput, we consider Cooperative Adaptive Cruise Control (CACC) system. CACC is then implemented in Smart Driving System. For better Performance, wireless communication is used to exchange Information of individual vehicle. By introducing vehicle to vehicle (V2V) communication and vehicle to roadside infrastructure (V2R) communications, the vehicle gets information not only from its previous and following vehicle but also from the vehicles in front of the previous Vehicle and following vehicle. This enables a vehicle to follow its predecessor at a closer distance under tighter control.


2015 ◽  
Vol 4 (3) ◽  
pp. 34-42
Author(s):  
T. Sri Lakshmi Sowmya ◽  
◽  
A. Ramesh ◽  
B.N.M. Rao ◽  
M. Kumar ◽  
...  

Author(s):  
Zakhid A. Godzhayev ◽  
Teymur Z. Godzhayev ◽  
Vladimir A. Korolyash ◽  
Ol’ga Yu. Solov’yeva

The article considers conditions for safe operation of low-tonnage road trains with overall trailers, namely universal platforms with a load capacity of up to 3 tons, capable of transporting agricultural machines, mini-factories and other equipment, as well as tourist houses. Transportation of such trailers on wheels is associated with high risks arising at small turning radii and emergency braking. (Research purpose) The research purpose is in improving the safety of operation and maneuverability of agricultural low-tonnage road trains operating in difficult road and terrain conditions of agricultural production. (Materials and methods) Authors have analyzed the results of research and experiments on the safe operation of low-tonnage road trains with trailers weighing up to 1 ton. The authors developed and tested on the basis of VIM and the Volga State Technical University a mechanical coupling device with a flexible connection that increases the handling and maneuverability of the trailer. (Results and discussion) The authors determined that the critical turning radii depending on the speed of a low-tonnage road train in different road conditions and different loading of the trailer when driving in front and rear for a conventional single-axle trailer with a load capacity of 1.5; 2; 2.5; 3 tons. It was found that the maneuverability is largely provided by the additional force in the cable, so authors recommend using a cable with a diameter of at least 9 mm. (Conclusion) Further research will make it possible to determine the critical indicators of safe operation of a low-tonnage road train with a load capacity of up to 3.5 tons: safe speed when passing critical turns, emergency braking and reversing.


2020 ◽  
Vol 53 (2) ◽  
pp. 13850-13854
Author(s):  
P. Polverino ◽  
I. Arsie ◽  
C. Pianese

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 565
Author(s):  
Changbo Liu ◽  
Zhendong Qian ◽  
Yang Liao ◽  
Haisheng Ren

This study aims to evaluate the economy of a steel bridge deck pavement scheme (SBDPS) using a comprehensive life-cycle cost (LCC) analysis approach. The SBDPS are divided into the “epoxy asphalt concrete system”(EA system) and“ Gussasphalt concrete system”(GA system) according to the difference in the material in the lower layer of the SBDPS. A targeted LCC checklist, including manager cost and user cost was proposed, and a Markov-based approach was applied to establish a life-cycle performance model with clear probability characteristics for SBDPS. Representative traffic conditions were designed using a uniform design method, and the LCC of SBDPS under representative traffic conditions and different credibility (construction quality as a random factor) was compared. The reliability of the LCC analysis approach was verified based on the uncertainty analysis method. Based on an expert-scoring approach, a user cost weight was obtained to ensure it is considered reasonably in the LCC analysis. Compared with the cumulative traffic volume, the cumulative equivalent single axle loads (CESAL) have a closer relationship with the LCC. The GA system has better LCC when the CESAL is less, while the EA system is just the opposite. The breaking point of CESAL for the LCC of the EA system and the GA system is 15 million times. The LCC analysis of SBDPS should consider the influence of random factors such as construction quality. The comprehensive LCC analysis approach in this paper can provide suggestions for bridge-management departments to make a reasonable selection on SBDPS.


Sign in / Sign up

Export Citation Format

Share Document