Research at the Office of Justice Programs (OJP): Evidence Integration: Gangs

2013 ◽  
Keyword(s):  
2020 ◽  
Author(s):  
Lluís Hernández-Navarro ◽  
Ainhoa Hermoso-Mendizabal ◽  
Daniel Duque ◽  
Alexandre Hyafil ◽  
Jaime de la Rocha

It is commonly assumed that, during perceptual decisions, the brain integrates stimulus evidence until reaching a decision, and then performs the response. There are conditions, however (e.g. time pressure), in which the initiation of the response must be prepared in anticipation of the stimulus presentation. It is therefore not clear when the timing and the choice of perceptual responses depend exclusively on evidence accumulation, or when preparatory motor signals may interfere with this process. Here, we find that, in a free reaction time auditory discrimination task in rats, the timing of fast responses does not depend on the stimulus, although the choices do, suggesting a decoupling of the mechanisms of action initiation and choice selection. This behavior is captured by a novel model, the Parallel Sensory Integration and Action Model (PSIAM), in which response execution is triggered whenever one of two processes, Action Initiation or Evidence Accumulation, reaches a bound, while choice category is always set by the latter. Based on this separation, the model accurately predicts the distribution of reaction times when the stimulus is omitted, advanced or delayed. Furthermore, we show that changes in Action Initiation mediates both post-error slowing and a gradual slowing of the responses within each session. Overall, these results extend the standard models of perceptual decision-making, and shed a new light on the interaction between action preparation and evidence accumulation.


2021 ◽  
Author(s):  
Miguel Barretto Garcia ◽  
Marcus Grueschow ◽  
Marius Moisa ◽  
Rafael Polania ◽  
Christian Carl Ruff

Humans and animals can flexibly choose their actions based on different information, ranging from objective states of the environment (e.g., apples are bigger than cherries) to subjective preferences (e.g., cherries are tastier than apples). Whether the brain instantiates these different choices by recruiting either specialized or shared neural circuitry remains debated. Specifically, domain-general theories of prefrontal cortex (PFC) function propose that prefrontal areas flexibly process either perceptual or value-based evidence depending on what is required for the present choice, whereas domain-specific theories posit that PFC sub- areas, such as the left superior frontal sulcus (SFS), selectively integrate evidence relevant for perceptual decisions. Here we comprehensively test the functional role of the left SFS for choices based on perceptual and value-based evidence, by combining fMRI with a behavioural paradigm, computational modelling, and transcranial magnetic stimulation. Confirming predictions by a sequential sampling model, we show that TMS-induced excitability reduction of the left SFS selectively changes the processing of decision-relevant perceptual information and associated neural processes. In contrast, value-based decision making and associated neural processes remain unaffected. This specificity of SFS function is evident at all levels of analysis (behavioural, computational, and neural, including functional connectivity), demonstrating that the left SFS causally contributes to evidence integration for  perceptual but not value-based decisions.


2013 ◽  
Vol 23 (11) ◽  
pp. 981-986 ◽  
Author(s):  
Ori Ossmy ◽  
Rani Moran ◽  
Thomas Pfeffer ◽  
Konstantinos Tsetsos ◽  
Marius Usher ◽  
...  

2012 ◽  
Vol 42 (6) ◽  
pp. 646-654 ◽  
Author(s):  
Russell E. Glasgow ◽  
Lawrence W. Green ◽  
Martina V. Taylor ◽  
Kurt C. Stange

2017 ◽  
Vol 114 (40) ◽  
pp. 10618-10623 ◽  
Author(s):  
Cristian Buc Calderon ◽  
Myrtille Dewulf ◽  
Wim Gevers ◽  
Tom Verguts

Multistep decision making pervades daily life, but its underlying mechanisms remain obscure. We distinguish four prominent models of multistep decision making, namely serial stage, hierarchical evidence integration, hierarchical leaky competing accumulation (HLCA), and probabilistic evidence integration (PEI). To empirically disentangle these models, we design a two-step reward-based decision paradigm and implement it in a reaching task experiment. In a first step, participants choose between two potential upcoming choices, each associated with two rewards. In a second step, participants choose between the two rewards selected in the first step. Strikingly, as predicted by the HLCA and PEI models, the first-step decision dynamics were initially biased toward the choice representing the highest sum/mean before being redirected toward the choice representing the maximal reward (i.e., initial dip). Only HLCA and PEI predicted this initial dip, suggesting that first-step decision dynamics depend on additive integration of competing second-step choices. Our data suggest that potential future outcomes are progressively unraveled during multistep decision making.


Sign in / Sign up

Export Citation Format

Share Document