On the Form of Decision Weight Function

2002 ◽  
Author(s):  
Shyhnan Liou ◽  
Chung-Ping Cheng
Keyword(s):  
2020 ◽  
Author(s):  
Anusha Ampavathi ◽  
Vijaya Saradhi T

UNSTRUCTURED Big data and its approaches are generally helpful for healthcare and biomedical sectors for predicting the disease. For trivial symptoms, the difficulty is to meet the doctors at any time in the hospital. Thus, big data provides essential data regarding the diseases on the basis of the patient’s symptoms. For several medical organizations, disease prediction is important for making the best feasible health care decisions. Conversely, the conventional medical care model offers input as structured that requires more accurate and consistent prediction. This paper is planned to develop the multi-disease prediction using the improvised deep learning concept. Here, the different datasets pertain to “Diabetes, Hepatitis, lung cancer, liver tumor, heart disease, Parkinson’s disease, and Alzheimer’s disease”, from the benchmark UCI repository is gathered for conducting the experiment. The proposed model involves three phases (a) Data normalization (b) Weighted normalized feature extraction, and (c) prediction. Initially, the dataset is normalized in order to make the attribute's range at a certain level. Further, weighted feature extraction is performed, in which a weight function is multiplied with each attribute value for making large scale deviation. Here, the weight function is optimized using the combination of two meta-heuristic algorithms termed as Jaya Algorithm-based Multi-Verse Optimization algorithm (JA-MVO). The optimally extracted features are subjected to the hybrid deep learning algorithms like “Deep Belief Network (DBN) and Recurrent Neural Network (RNN)”. As a modification to hybrid deep learning architecture, the weight of both DBN and RNN is optimized using the same hybrid optimization algorithm. Further, the comparative evaluation of the proposed prediction over the existing models certifies its effectiveness through various performance measures.


1994 ◽  
Vol 70 (5) ◽  
pp. 297-301 ◽  
Author(s):  
Xanthippi Markenscoff
Keyword(s):  

2000 ◽  
Vol 68 (1) ◽  
pp. 101-108 ◽  
Author(s):  
A. R. Hadjesfandiari ◽  
G. F. Dargush

A theory of boundary eigensolutions is presented for boundary value problems in engineering mechanics. While the theory is quite general, the presentation here is restricted to potential problems. Contrary to the traditional approach, the eigenproblem is formed by inserting the eigenparameter, along with a positive weight function, into the boundary condition. The resulting spectra are real and the eigenfunctions are mutually orthogonal on the boundary, thus providing a basis for solutions. The weight function permits effective treatment of nonsmooth problems associated with cracks, notches and mixed boundary conditions. Several ideas related to the convergence characteristics are also introduced. Furthermore, the connection is made to integral equation methods and variational methods. This paves the way toward the development of new computational formulations for finite element and boundary element methods. Two numerical examples are included to illustrate the applicability.


2005 ◽  
Vol 2005 (18) ◽  
pp. 2871-2882 ◽  
Author(s):  
Marilena N. Poulou ◽  
Nikolaos M. Stavrakakis

We prove the existence of a simple, isolated, positive principal eigenvalue for the quasilinear elliptic equation−Δpu=λg(x)|u|p−2u,x∈ℝN,lim|x|→+∞u(x)=0, whereΔpu=div(|∇u|p−2∇u)is thep-Laplacian operator and the weight functiong(x), being bounded, changes sign and is negative and away from zero at infinity.


1970 ◽  
Vol 37 (2) ◽  
pp. 267-270 ◽  
Author(s):  
D. Pnueli

A method is presented to obtain both upper and lower bound to eigenvalues when a variational formulation of the problem exists. The method consists of a systematic shift in the weight function. A detailed procedure is offered for one-dimensional problems, which makes improvement of the bounds possible, and which involves the same order of detailed computation as the Rayleigh-Ritz method. The main contribution of this method is that it yields the “other bound;” i.e., the one which cannot be obtained by the Rayleigh-Ritz method.


Sign in / Sign up

Export Citation Format

Share Document